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Enhanced First-Order Shear
Deformation Theory for
Laminated and Sandwich Plates
A new first-order shear deformation theory (FSDT) has been developed and verified for
laminated plates and sandwich plates. Based on the definition of Reissener–Mindlin’s
plate theory, the average transverse shear strains, which are constant through the thick-
ness, are improved to vary through the thickness. It is assumed that the displacement and
in-plane strain fields of FSDT can approximate, in an average sense, those of three-
dimensional theory. Relationship between FSDT and three-dimensional theory has been
systematically established in the averaged least-square sense. This relationship provides
the closed-form recovering relations for three-dimensional variables expressed in terms
of FSDT variables as well as the improved transverse shear strains. This paper makes
two main contributions. First an enhanced first-order shear deformation theory (EFSDT)
has been developed using an available higher-order plate theory. Second, it is shown that
the displacement fields of any higher-order plate theories can be recovered by EFSDT
variables. The present approach is applied to an efficient higher-order plate theory.
Comparisons of deflection and stresses of the laminated plates and sandwich plates using
present theory are made with the original FSDT and three-dimensional exact
solutions. �DOI: 10.1115/1.2041657�
1 Introduction
Increasingly in modern aerospace industry, composite materials

are being used in primary load structures. Laminated composite
materials provide excellent opportunities for lightweight and high
stiffness structures as well as elastic couplings for potential opti-
mization of design criteria. In the analysis of laminated compos-
ites, a first-order shear deformation theory is adequate to estimate
the global behavior. But for high accuracy and fidelity of strength
analysis, accurate prediction of stresses is required as well. Vari-
ous analysis techniques have been developed for predicting the
behavior of laminated plates. However, simple methods which can
accurately predict not only the global behavior but also the
through-the-thickness stress distribution are rare.

Since the first-order shear deformation theory �FSDT� was pro-
posed by Reissner �1� and Mindlin �2�, many plate theories have
been developed to overcome the deficiency of FSDT. Historically,
smeared displacement based higher order theories were developed
first ��3–5��. The assumed in-plane displacement of these higher
order theories is expressed as polynomial form. The degree of
assumed polynomial decides the order of the plate theory. The
polynomial-based in-plane displacement field is at variance with
the three-dimensional elasticity displacement field because it does
not satisfy interface stress continuity and top and bottom surface
static boundary conditions. To obtain improved results, layerwise
theories have been developed �6�. These are known to be fairly
accurate since at each interface between layers, they allow a kink
in the slope of deflection. Nevertheless, these theories have the
drawback of requiring many degrees of freedom, which depend
upon the number of layers. Simplified zigzag theories have gained

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS.
Manuscript received by the Applied Mechanics Division, May 25, 2004; final revi-
sion, May 22, 2005. Associate Editor: R. C. Benson. Discussion of the paper should
be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied Mechan-
ics, Department of Mechanical and Environmental Engineering, University of
California-Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
four months after final publication in the paper itself in the ASME JOURNAL OF AP-
PLIED MECHANICS.
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attention because of their accuracy and efficiency in the ply-level
analysis �7–9�. One of them is an efficient higher plate theory
�EHOPT� developed by Cho and Parameter ��8��, which satisfies
not only the traction free conditions at the top and bottom surface
but also the traction continuity conditions at the interface, and has
only five degrees of freedom. Extensive reviews up to date can be
found in the review papers of Noor and Burton ��10��, Kapania
and Raciti ��11��, and Reddy and Robbins, Jr. ��12��.

On the other hand, the efforts to improve the original first-order
shear deformation theory have been made because FSDT is still
the most attractive approach due to its simplicity and low compu-
tational cost. One of them is to find an accurate shear correction
factor �SCF� for laminated composites �13,14�. As is well known,
the global response by FSDT with an appropriate SCF is fairly
good, even for thick laminated plates. However, it is also difficult
to determine properly the shear correction factor of laminates,
upon which the accuracy of the prediction of FSDT is strongly
dependent. Qi and Knight have developed a refined first-order
shear deformation theory �15,16�. They introduced the effective
shear stress and strain so that the actual shear stress and strain are
expressed in terms of the averaged shear strain of the original
FSDT. The resulting effective shear stiffness plays a role of the
SCF. This method, however, is limited to cylindrical bending
problem and thus it is not adequate for angle-ply laminates that
have the transverse shear coupling. Noor and Burton proposed a
predictor-corrector method �17�. The displacement fields have
been calculated by integrating the equilibrium equation of the
FSDT with an appropriate SCF through the thickness. A postpro-
cess method has been developed by Cho and Kim �18�. An
EHOPT developed by Cho and Parameter ��8�� is utilized as a
postprocessor. They found the relationship between FSDT with
SCF and EHOPT under the assumption of the transverse shear
energy equivalence. This method has been extended to general
lamination configuration �19�. Accuracy of both predictor-
corrector and postprocess methods is strongly dependent upon the
SCF. The problem that has arisen in both methods is complexity
due to the transverse shear coupling.

Hodges et al. ��20�� have developed the neo-classical plate
theory �NCPT� that was derived using the variational-asymptotic

method originally proposed by Berdichevsky ��21��. It provides
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the refined transverse shear stiffness as well as recovering rela-
tions to three-dimensional �3D� displacement fields. Although it is
variational-asymptotically correct, results reported for that corre-
lation of NCPT with the exact solution is not good for thick com-
posites. A more accurate asymptotically correct shear deformation
theory is proposed by Sutyrin ��22��. As he pointed out, however,
the variational-asymptotic technique leads to a theory with higher
derivatives, which is asymptotically correct but not useful because
of its being overly complex.

In this paper, an enhanced first-order shear deformation theory
�EFSDT� is presented and used to solve the laminated plates and
sandwich plates as a justification. The present theory is based on
the definition of Reissener-Mindlin’s plate theory. It is assumed
that the displacements of FSDT can approximate, in an average
sense, three-dimensional displacements or those of higher-order
theories. Relationship between FSDT and a higher-order theory
has been systematically established using the definition of the
FSDT variables. This relationship provides the closed-form recov-
ering relations for higher-order theory variables expressed in
terms of FSDT variables as well as the improved transverse shear
strains. There are many higher-order theories. One of them,
EHOPT developed by Cho and Parameter ��8��, is selected be-
cause it can describe an accurate transverse shear distribution and
has the same number of variables as the FSDT. The transverse
shear strains of the original FSDT, which are constant through the
thickness, are improved to vary through the thickness.

This paper makes two main contributions. First, an enhanced
first-order shear deformation theory �EFSDT� has been developed.
Second, it is shown that the displacement fields of a higher-order
theory can be recovered by EFSDT variables, in the averaged
least-square sense. Comparisons of deflection and stresses of the
laminated plates and sandwich plates using the present theory are
made with the original FSDT and three-dimensional exact solu-
tions.

2 Three-Dimensional Displacement and Strain Fields
In this paper we consider only linear plate theory. A laminated

plate of thickness h made of a monoclinic material is considered.
Geometry and coordinates of a laminated plate are shown in Fig.
1. Greek indices will take values in the set 1,2, whereas Latin
indices will take values in 1,2,3. The summation convention on
repeated indices will also be used.

The reference two-dimensional plane is represented by x�

and the through-the-thickness position is denoted by x3, where
x3� �−h /2 ,h /2� and h is the thickness of the plate. The deformed
state of plate is described by three spatial displacements, ui, as
functions of xi. According to the asymptotic analysis ��23��, the
general form of displacement fields of the interior solution can be
expressed by

u��xi� = uo�x�� − uo �x��x3 + W��xi� �1�

Fig. 1 Geometry and coordinates of laminated plate
� 3,�
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u3�xi� = u3
o�x�� + W3�xi� �2�

in which Wi are through-the-thickness warping functions, and in-
plane warping function W� can be expanded in terms of the effec-
tive transverse shear strain ��

�k�

W��xi� = �
k=1

N�

���
�k��x3���

�k��x��, �k = 1,2, . . . ,N�� �3�

so that in-plane displacement converges to Kirchhoff-Love dis-
placement as the transverse shear strain vanishes.

From definition of the mean displacement through the thickness
of the plate ui

o, the kinematical constraints on the warping func-
tions are given

�Wi�x�,x3�� = 0 → ����
�k��x3�� = 0, �k = 1,2, . . . ,N�� �4�

so that

u�
o =

1

h
�u��xi��, u3

o�x�� =
1

h
�u3�xi�� , �5�

where ��� is defined by

��� � 	
−h/2

h/2

� dx3. �6�

Note that ui
o, which is the averaged displacement through the

thickness of the deformed middle surface, may or may not be the
displacement at the undeformed middle surface, x3=0 �21�.

The strains associated with the small displacement theory of
elasticity are given by

����xi� = ���
�o��x�� + x3���

�1��x�� + ���
�w��xi� , �7�

�3��xi� = W��xi�,3 + W3�xi�,� = �
k=1

N�

���,3
�k� ��

�k� + W3,�, �8�

where

���
�0� =

1

2
�u�,�

o + u�,�
o �, ���

�1� = −
1

2
�u3,��

o + u3,��
o �, ���

�w� =
1

2
�W�,�

+ W�,�� . �9�

The three-dimensional strain energy per unit area U3D is given
by

U3D =
1

2
�C���������� + C�3�3��3��3 + 2C33������33

+ C3333�33�33� , �10�

where Cijkl are components of the elasticity tensor with mono-
clinic symmetry properties.

Under the assumption of a negligible transverse normal stress
	33
0, which is equivalent to minimize the strain energy with
respect to �33, the reduced strain energy U is given as

U = min
�33

U3D =
1

2
�E���������� + E�3�3��3��3� , �11�

where

E���� � C���� −
C��33C��33

C3333
, E�3�3 � C�3�3 �12�

and corresponding condition is

�33 = −
C��33

C3333
���. �13�

From this condition, we can obtain the out-of-plane warping
function W3 with a geometric constraint of Eq. �4� and a kinematic

continuity condition. That is,
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W3 = −	 C��33

C3333
���dx3, s.t. �W3� = 0. �14�

3 Averaged Displacement and Strain Fields
in Least-Square Sense

In Reissner-Mindlin’s plate theory, the displacement field as-
sumptions include a linear in-plane displacement and a constant
transverse deflection. These assumptions are retained in the
present approach so that extensional and bending strain energy
expression are the same as FSDT. However, the transverse shear
strain energy will be derived from three-dimensional strain energy
by introducing the averaged extensional and bending strain con-
cept in this section.

Complexities in three-dimensional analysis come from warping
function Wi. In order to approximate the warping function, we
introduce the averaged in-plane strain �̄�� such that

�̄�� = �̄��
o + x3
��, �15�

where �̄��
o and 
�� are obtained by minimizing the error of aver-

aged strain in the least-square sense

min
�̄��

o
����� − �̄���2� = 0 → �̄��

o = ���
�o� , �16�

min

��

����� − �̄���2� = 0 → 
�� = ���
�1� +

12

h3 �x3���
�w�� . �17�

It has turned out that minimizing the error of averaged in-plane
strain is equivalent to minimizing the error of averaged in-plane
displacement. The averaged displacement fields are defined by

ū� = ū�
o + x3��, ū3 = ū3

o, �18�

where

min
ū�

o
��u� − ū��2� = 0 → ū�

o = u�
o , �19�

min
��

��u� − ū��2� = 0 → �� = − u3,�
o +

12

h3 �x3W�� , �20�

min
ū3

o
��u3 − ū3�2� = 0 → ū3

o = u3
o, �21�

which are the same results as Reissner’s definition ��1��, that is,

ū�
o �

1

h
�u��, �� �

12

h3 �x3u�� . �22�

From Eqs. �20� and �21�, the averaged displacement term ��

+ ū3,�
o , which is the transverse shear strain from Eq. �18�, can be

expressed in terms of the effective transverse shear strain ��
�k�.

Namely

�̄3� = �
k=1

N�

���
�k���

�k� �23�

where

�̄3� � �� + ū3,�
o , ���

�k� �
12

h3 �x3���
�k�� . �24�

It is assumed that the out-of-plane warping function W3 is neg-
ligible in the actual transverse shear strain �3� of Eq. �8�, in the
variational-asymptotic sense ��20��. Then the transverse shear
strain can be expressed in terms of the effective shear strain ��

�k�

�3� 
 �
N�

���,3
�k� ��

�k�. �25�

k=1
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In order to rewrite the reduced strain energy of Eq. �11� in
terms of the averaged strain, it is required to express the effective
transverse shear strain ��

�k� in terms of the averaged transverse
shear strain �̄3�. However, the number of equations for the rela-
tions between �̄3� and ��

�k� is less than the number of the effective
shear strain ��

�k�. The required additional equations are obtained
by introducing the weighted least-square approximation. By ap-
plying the weighting function that is a function of the through-the-
thickness coordinate x3

k to Eq. �20�, it can be rewritten by

min
��

��Wk−1�x3��u� − ū���2� = 0 �k = 1,2, . . . ,N�� , �26�

where weighting function Wk−1 can be chosen from the various
function sets such as Legendre polynomials, power form, and
trigonometric functions. In the present study, we pick up power
form xk−1 as a weighting function. Then

min
��

��x3
k−1�u� − ū���2� = 0 �k = 1,2, . . . ,N�� , �27�

which renders

�
�̄31

]

�̄31

�̄32

]

�̄32

 = �
�11

�1,1� �12
�1,1�

¯ �11
�1,N�� �12

�1,N��

] ] � ] ]

�11
�N�,1� �12

�N�,1�
¯ �11

�N�,N�� �12
�N�,N��

�21
�1,1� �22

�1,1�
¯ �21

�1,N�� �22
�1,N��

] ] � ] ]

�21
�N�,1� �22

�N�,1�
¯ �21

�N�,N�� �22
�N�,N��

��
�1

�1�

�2
�1�

]

�1
�N��

�2
�N��
 ,

�28�
where

���
�i,j� =

�x3
2i−1���

�j� �
�x3

2i�
, �i, j = 1,2, . . . ,N�� . �29�

Thus the effective shear strain ��
�k� is expressed in terms of the

averaged shear strain �̄3� only

��
�k� = �̂��

�k� �̄3�, �k = 1,2, . . . ,N�� , �30�

where �̂��
�k� is obtained from the inverse of the matrix that retains

���
�i,j� in Eq. �28�.
This expression in Eq. �28� is the major contribution of the

present study.

4 Enhanced First-Order Shear Deformation Theory
In this section we present an enhanced first-order shear defor-

mation theory for laminated plate using an efficient higher-order
plate theory �8�. Three-dimensional strain energy per unit area is
restated in terms of the averaged strain. Explicit relations between
three-dimensional and averaged displacement fields are given
through the least-square approximation of in-plane strains that are
presented in the previous section.

The reduced strain energy per unit area of the plate in terms of
the effective shear strain is obtained by substituting Eq. �25� into
Eq. �11�

U =
1

2�E���������� + E�3�3�
i=1

N�

�
j=1

N�

���,3
�i� ���,3

�j� ��
�i���

�j�� .

�31�
To minimize the error of the averaged in-plane strains, the relation
of Eq. �23� should be satisfied. However, as mentioned before, we
cannot uniquely determine the relation between the averaged
shear strain and the effective shear strain. Thus we use the ap-
proximated relation of Eq. �30�. By imposing this relation to the
reduced total strain energy expression, the approximated strain

energy in the least-square sense is given as follows:
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U �
1

2�E�����̄���̄�� + E�3�3�
i=1

N�

�
j=1

N�

���,3
�i� ���,3

�j� �̂�
�i��̂��

�j� �̄3�̄3�� .

�32�
Substituting Eq. �15� into Eq. �32� and integrating the strain

energy through the thickness yields

U =
1

2
�A�����̄��

o �̄��
o + 2B�����̄��

o 
�� + D����
��
��

+ G�3�3�̄3��̄3�� , �33�

where

A���� = �E�����, B���� = �x3E�����, D���� = �x3
2E����� ,

G�3�3 =�E3�3�
i=1

N�

�
j=1

N�

��,3
�i� ���,3

�j� �̂��
�i� �̂��

�j� � �34�

and the averaged strain-displacement relations are given by

�̄��
o =

1

2
�ū�,�

o + ū�,�
o �, 
�� =

1

2
���,� + ��,��, �̄3� = �� + ū3,�

o .

�35�

Note that the strain energy expression except the transverse shear
energy coincides with that of FSDT. Matrices A, B and D are the
well known transformed reduced stiffness in both classical lami-
nated plate theory �CLPT� and FSDT ��24��.

Three-dimensional displacement fields can also be expressed in
terms of the averaged displacement variables as

u� = ū�
o − x3ū3,�

o + �
k=1

N�

���
�k��̂��

�k��̄3�,

u3 = ū3
o + W3, �36�

where W3 is determined by Eq. �14�, and in-plane warping func-
tion ���

�k� is not determined yet. In general, it is hard to determine
an appropriate warping function ���

�k� for laminated composites.
Thus we utilize a refined plate theory to obtain the in-plane warp-
ing function. Many higher order theories have been reported in the
literature. An efficient higher order plate theory �EHOPT� among
others, is selected due to its simplicity and accuracy.

In EHOPT, zigzag linear function is superimposed to the glo-
bally cubic varying displacement field to satisfy the static conti-
nuity as well as the geometric continuity conditions. Thus the
EHOPT displacement field for symmetric lamination configura-
tions is given as follows:

u��xi� = u�
o�x�� − u3,�

o �x��x3 + ����x3����x��, u3�xi� = u3
o�x��

�37�

in which

��� � ���x3 −
4

3h2���� + �
k=1

N/2−1

a��
k �x3

3 + �
k=1

N/2−1

a��
k ��x3 − x3�k�

�H�x3

− x3�k�
� − �− x3 − x3�k�

�H�− x3 − x3�k�
�� �38�

where ��� is the Kronecker delta function, N is the number of
layers, and H�x3−x3�k�

� is the Heaviside unit step function. The

coefficient a��
k represents the change in slope at each interface,

and depends only upon the material properties of each layer. The
explicit expression of a��

k can be found in Ref. �8�.
From Eqs. �24� and �38�, the 2 by 2 matrix ��� can be obtained
as follows:
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��� =
4

5
��� −

1

5 �
k=1

N/2−1

a��
k +

h3

6 �
n=1

N/2−1� 1

3
�x3�n+1�

3 − x3�n�

3 ��
k=1

n

a��
k �

�39�
For isotropic plates, the diagonal components of the inverse ma-
trix of ��� can be easily shown to be 4/5, which coincides with
Qi and Knight’s ��15,16�� result. This result is equivalent to the
case of the shear correction factor equal to be 5/6. The transverse
shear strains of the EHOPT can be expressed in terms of the
averaged transverse shear strain �̄3� from Eqs. �30� and �39�.
Namely,

�3� = ���,3�� = ���,3�̂���̄3�, �̄3� � �� + u3,�
o , �40�

where �̂�� is the inverse of ���, and

���,3 = �1 −
4

h2x3
2���� + �

k=1

N/2−1

a��
k �−

4

h2x3
2 + H�x3 − x3�k�

�

+ H�− x3 − x3�k�
�� . �41�

The new transverse shear stiffness G�3�3, which is the so-called
effective transverse shear stiffness, using EHOPT and the nominal
shear stiffness in FSDT is given by

G�3�3 = �E3�3��,3���,3�̂���̂���, Ḡ�3�3 = �E�3�3� . �42�

Note that the effective shear stiffness G�3�3 comes to be 5
6Ḡ�3�3

for isotropic material. Finally, the following displacement fields
are used to predict the stresses:

u� = ū�
0 − ū3,�

o x3 + ����̂���̄3�, u3 = ū3
o, �43�

where overbar � � variables are obtained from the traditional
FSDT with the effective transverse shear stiffness instead of the
nominal transverse shear stiffness, without SCF.

The present approach is analogous to Qi and Knight’s ��15,16��
treatment of effective transverse shear strain, which takes the form

�̄xz =
�	xz�xz�

�	xz�
=

�H	H��
�H	�

�xz, �xz � H��z��xz �44�

However, their approach was limited by the one-dimensional case.
The transverse shear stress and strain distribution shape function
H	 ,H� could not be calculated by such a manner, especially for
the angle-ply laminated plates that include the transverse shear
coupling. The present approach does not require the shear correc-
tion factors, and can also be applied for general lamination con-
figuration.

5 Numerical Results and Discussion
To examine the accuracy of the present theory, a simply sup-

ported laminated plate has been considered. The exact solution for
bending problem of cross-ply laminated plates and sandwich
plates proposed by Pagano ��25�� is used as the benchmark solu-
tion for the present theory, and the results presented herein labeled
as “exact” generated from his equations.

The ply material properties in cross-ply laminated plates are
given as

EL = 25 � 106 psi, ET = 1.0 � 106 psi,

GLT = 0.5 � 106 psi, GTT = 0.2 � 106 psi,

LT = TT = 0.25, �45�

where L denotes a fiber direction and T denotes a perpendicular
direction to the fiber. For a sandwich plate, the material properties
of face sheet are given by Eq. �45�, and the core material proper-

ties are taken as
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plate

Fig. 3 In-plane displacements f

Fig. 5 Transverse shear stresses

Journal of Applied Mechanics
Ex = 0.145 � 105 psi, Ey = Ex,

Gxz = 0.58 � 104 psi, Gyz = Gxy = Gxz, xy = 0.25. �46�

We have chosen to present most of our results for the length-to-
thickness ratio, L1 /h, values of 4 and 20, which are selected for
laminated plates and sandwich plates, respectively. We also look
at the plate transverse displacement as a function of L1 /h.

Non-dimensionalized displacement and stresses reported in
Figs. 2–12 are defined by

ū� =
ETu�

pohS3 , ū3 =
100ETu3

pohS4 , 	̄�� =
	��

poS2 , 	̄3� =
	3�

poS
,

S �
L1

h
, �47�

where � � denotes the normalized quantities. The through-the-
thickness distributions of in-plane displacement, in-plane stresses,
and transverse shear stresses are evaluated at which their maxi-
mum occurs.

or †0°/90°/0°‡ laminated plate

†0°/90°/0°‡ laminated plate
Fig. 2 Transverse displacement error for †0°/90°/0°‡ laminated
Fig. 4 In-plane stresses for
for †0°/90°/0°‡ laminated plate
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†0°
The calculated results are compared to the elasticity solutions.
For all the problems, a simply supported boundary condition is
applied. The transverse load is assumed to have the form

p�x�,0.5h� = po sin��x1

L1
�sin��x2

L2
� . �48�

The following three cases are considered to demonstrate the ac-
curacy of the present theory.

• Case 1: A three-layered symmetric cross-ply �0°/90°/0°�
square plate. Each layer has the same thickness h /3 �25�.

• Case 2: A nine-layered symmetric cross-ply
�0° /90° /0° /90° /0° �s square plate �26�.

• Case 3: A sandwich �0°/Core/0°� square plate �27�. The
thickness of each face sheet is equal to h /10.

In all the results below, solid lines represent the exact solution,
while dashed lines represent the present enhanced first-order shear
deformation theory �EFSDT� results. Results from Reissner-
Mindlin’s FSDT with SCF of 5/6 are shown in dash-dotted line.
Transverse shear stresses by FSDT are obtained from the equilib-

Fig. 6 In-plane displacements for

Fig. 7 In-plane stresses for †0°
Fig. 8 Transverse shear stresses for †
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rium equations through integration of the in-plane stresses. We
present the transverse shear stresses from the present EFSDT by
two different ways that are the constitutive and equilibrium ap-
proaches, denoted by �c� and �e�, respectively.

5.1 Comparison of Shear Correction Factor (SCF). There
are two ways to obtain the shear correction factor. Whitney
�13,14� calculated the SCF using the closed form solution for the
cylindrical bending problem. Noor and Burton �17� obtained the
SCF by an iterative manner. In any case, the SCF is obtained
through the comparison between the transverse shear strain ener-
gies that are estimated by constitutive and equilibrium equations.
Their results are quite good for cross-ply laminated and sandwich
plates, as presented in Ref. �28�. However, it is not natural to
apply these methods to general layup configurations.

The present EFSDT does not require shear correction factor
explicitly and the conventional “equivalent” shear correction fac-
tors can be defined from the present EFSDT as follows:

k�
2 � G�3�3/Ḡ�3�3, k3

2 � G1323/Ḡ1323, �49�

where � � denotes the nominal shear stiffness, and k3
2 represents

/90° /0° /90° /0° ‡s laminated plate

0° /0° /90° /0° ‡s laminated plate
/9
0° /90° /0° /90° /0° ‡s laminated plate
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wich plate

Fig. 12 Transverse shear stresses
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the SCF due to the transverse shear coupling.
Shear correction factors obtained from present theory for three-

layered laminated plates and sandwich plates are compared in
Table 1 with the results obtained by the methods of Whitney and
Noor and Burton �14,17�. The SCF obtained from present theory
shows a good agreement with the others for each case. In three-
layer laminated plate case, the shear correction factor is close to
SCF of 5/6 for isotropic material. However, it is significantly
changed in the sandwich plate. The difference between SCF pre-
sented in Table 1 and a typical value of 5 /6 is about 90%. There-
fore, an appropriate transverse shear stiffness is required to esti-
mate an accurate global response, such as deflection, particularly
for a sandwich plate that experiences a significant shear deforma-
tion due to core material.

5.2 Displacement and Stress Distributions in Cross-Ply
Laminated Plates. Results for the three-layered laminated plate
with S=4 are shown in Figs. 2–5. The transverse displacement of
the plate reference surface as a function of length-to-thickness
ratio S=L1 /h is presented in Fig. 2. The percentage error of FSDT
and EFSDT solution with respect to the exact solution are shown.
Results from EFSDT solution converge rapidly to those of the

or †0°/Core/0°‡ sandwich plate

0°/Core/0°‡ sandwich plate
Fig. 9 Transverse displacement error for †0°/Core/0°‡ sand-
Fig. 10 In-plane displacements f
Fig. 11 In-plane stresses for †
for †0°/Core/0°‡ sandwich plate
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exact for thin plates, while FSDT solution converge slowly to the
exact solution as the thickness becomes smaller. The difference
between EFSDT and FSDT is very small, over S=40–100, but
rapidly grows up as length-to-thickness ratio approaches S=4.

Figures 3 and 4 show the through-the-thickness variation of
non-dimensionalized in-plane displacements and stresses, respec-
tively. It is observed that the present results for ū� and 	̄�� are in
good agreement with the exact solution for thick plate with S=4.
The nonlinear through-the-thickness distributions of ū1 and 	̄11
with slope discontinuities at interfaces have been very well cap-
tured by the present EFSDT. The transverse shear stresses are
presented in Fig. 5. The direct constitutive approach yields com-
paratively less accurate shear distribution, but predicts the quali-
tative through-the-thickness distribution quite accurately. It is
shown that present EFSDT is capable of producing good trans-
verse shear stresses using constitutive equations. But, as expected,
the equilibrium approach gives much better results. The constitu-
tive approach is, however, more attractive because the equilibrium
approach requires the higher derivatives of deflection ū3

o that
causes a numerical problem in practice �28�.

Results for the nine-layered laminated plate with S=4 are
shown in Figs. 6–8. Results from EFSDT in this example show
more close to exact solution than those in previous example. Once
more, Fig. 8 shows reasonable agreement by transverse shear
stress calculated by the present theory using constitutive relations
and the exact solution. The constitutive approach in EFSDT pro-
duces even better results than the equilibrium approach in FSDT
in predicting the maximum shear stress.

5.3 Displacement and Stress Distributions in a Sandwich
Plate. In order to study a significant transverse shear deformation
effect, a simply supported �0°/Core/0°� sandwich plate with the
thickness of each face sheet equal to h /10 is considered �Case 3�.
The percentage error of non-dimensionalized transverse displace-
ment is shown in Fig. 9. The results from EFSDT clearly indicate
that the percentage error with respect to the exact solution in
predicting the transverse displacement is much less than in the
case of FSDT. For a moderately thick sandwich plate with S=20,
the deflection error of EFSDT is 11.0% while that of FSDT shows
a significant deviation of 71.9% from the exact solution. Even for
a very thin plate with S=200, the transverse displacement error of
FSDT shows a deviation of 3.7%.

For the length-to-thickness ratio of S=20, in-plane displace-
ments and stresses are presented in Figs. 10 and 11, and results are
also compared with the exact and FSDT solutions. The slope dis-
continuities of in-plane displacement at interface are well pre-
dicted by present EFSDT. In the in-plane stress distributions the
present results are in good agreement with those of the exact
solution. It is shown that the predicted in-plane stresses using
FSDT are very poor, especially for 	22. The transverse shear
stresses of sandwich plate with S=20 are shown in Fig. 12. The
transverse shear stress 	23 is severely underestimated by FSDT. It
is observed that the constitutive approach gives better results than
the equilibrium approach in EFSDT, which results from inaccurate
in-plane warping function W�.

For an accurate prediction of the transverse shear stresses in
sandwich plates, it is required to utilize more accurate refined
displacement field of higher order theory rather than EHOPT,

Table 1 Comparison o

Three layer

SCF Whitney Noor and Burton Prese

k1
2 0.582 78 0.579 92 0.557

k2
2 0.802 78 0.865 00 0.855
which may require the effect of transverse normal deformation.
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However, the present theory has a merit in that it always gives
better results than the FSDT while it retains the same computa-
tional cost.

6 Conclusions
An enhanced first order shear deformation theory, we call it

EFSDT, is developed, which is based on the weighted least-square
approximation for three-dimensional in-plane strain fields. The
appropriate two-dimensional stiffness model for the laminated
plates is derived from a three-dimensional theory through a sys-
tematic approach. It is shown that the definition for displacement
variables of traditional FSDT ��1�� can be derived from the con-
dition that in-plane strains of FSDT approximate those of a three-
dimensional theory in the least-square sense. From this condition,
the relationship between variables of FSDT and a three-
dimensional theory is constructed, which yields the effective
transverse shear stiffness and recovering relationships from two-
dimensional FSDT displacement to three-dimensional one.

The averaged displacement fields are the same as those of
FSDT. Thus the present theory preserves the computational ad-
vantage of FSDT while allowing for important local through-the-
thickness variations of displacements and stresses. An efficient
higher order theory �EHOPT� is utilized to obtain the in-plane
warping function, but the proposed approach can also be applied
to any higher order theories.

The accuracy, applicability, and robustness of the present theory
have been demonstrated by obtaining an analytical solution for
simply supported laminated plates and sandwich plates and com-
paring the results with the 3D exact solution and the FSDT solu-
tion with SCF of 5/6. The accuracy level increases drastically
with the increase of length-to-thickness ratio. The transverse shear
stress in a sandwich plate, however, is not as accurately predicted
as that of composite laminates although it is better than FSDT.
The error is due to the inaccurate in-plane warping function and
the neglect of out-of-plane warping effect affect, the effective
transverse shear stiffness.

Work is in progress to extend the present theory to the dynam-
ics and more general classes of laminated plates.
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Wrinkling of Wide Sandwich
Panels/Beams With Orthotropic
Phases by an Elasticity Approach
There exist many formulas for the critical compression of sandwich plates, each based on
a specific set of assumptions and a specific plate or beam model. It is not easy to
determine the accuracy and range of validity of these rather simple formulas unless an
elasticity solution exists. In this paper, we present an elasticity solution to the problem of
buckling of sandwich beams or wide sandwich panels subjected to axially compressive
loading (along the short side). The emphasis on this study is on the wrinkling (multi-
wave) mode. The sandwich section is symmetric and all constituent phases, i.e., the
facings and the core, are assumed to be orthotropic. First, the pre-buckling elasticity
solution for the compressed sandwich structure is derived. Subsequently, the buckling
problem is formulated as an eigen-boundary-value problem for differential equations,
with the axial load being the eigenvalue. For a given configuration, two cases, namely
symmetric and anti-symmetric buckling, are considered separately, and the one that
dominates is accordingly determined. The complication in the sandwich construction
arises due to the existence of additional “internal” conditions at the face sheet/core
interfaces. Results are produced first for isotropic phases (for which the simple formulas
in the literature hold) and for different ratios of face-sheet vs core modulus and face-
sheet vs core thickness. The results are compared with the different wrinkling formulas in
the literature, as well as with the Euler buckling load and the Euler buckling load with
transverse shear correction. Subsequently, results are produced for one or both phases
being orthotropic, namely a typical sandwich made of glass/polyester or graphite/epoxy
faces and polymeric foam or glass/phenolic honeycomb core. The solution presented
herein provides a means of accurately assessing the limitations of simplifying analyses in
predicting wrinkling and global buckling in wide sandwich panels/beams.
�DOI: 10.1115/1.1978919�
1 Introduction
The compressive strength of thin sheets can be realized only if

they are stabilized against buckling. In sandwich construction, two
such sheets �face-sheets� are bonded to a core slab of different
�light� material. Both the core and the face-sheets can be isotropic
or anisotropic.

Panels of this construction give rise to a set of problems of
strength, stiffness, and stability analogous to, but by no means
identical with, the well-known problems of ordinary homoge-
neous elastic beam/plates. One of these is “cylindrical buckling.”
Referring to Fig. 1, the panel is so wide that lines along the y axis
can be taken as uncarved. Therefore, a unit width can be treated as
an Euler column. Buckling is either like column buckling �Euler
buckling� or a short wave “wrinkling” of the face sheets. In the
former, the core may exhibit a substantial shearing deformation; in
the latter, it acts like an elastic foundation and the buckling defor-
mation is mainly confined to the layers adjacent to the face sheets.

Wrinkling of a symmetric configuration can occur in a symmet-
ric mode or an antisymmetric one �Fig. 2�. The initial investiga-
tions of this mode of buckling were by Hoff and Mautner �1�,
Goodier and Neou �2� and Gough, Elam, and de Bruyne �3�.
Based on these early investigations, a whole chapter is devoted to
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wrinkling in Allen’s book �4�. Recently, interest has also been in
wrinkling under biaxial loading �Birman and Bert �5��.

The existence of different wrinkling formulas based on various
beam or plate models underscores the need for an elasticity solu-
tion, in order to compare the accuracy of the predictions from the
simple beam/plate formulas. Elasticity solutions for buckling have
become available mainly for the axisymmetric cylindrical shell
geometry, due to the availability of three-dimensional elasticity
solutions for the pre-buckling state and the ease of formulation
afforded by the axisymmetry. In particular, Kardomateas �6� and
Kardomateas and Chung �7� formulated and solved the problem
for the case of uniform external pressure and orthotropic homo-
geneous material �a two-dimensional “ring” assumption was made
in the first paper�. Homogeneous cylindrical shells under axial
compression were studied by Kardomateas �8,9� and by Soldatos
and Ye �10� for combined axial compression and uniform external
pressure �the latter was based on a successive approximation
method�.

As far as sandwich structures, a three-dimensional elasticity
solution for the buckling of a sandwich long shell under external
pressure �again, “ring” assumption� was recently done by Kardo-
mateas and Simitses �11�. In all these studies, a pre-requisite to
obtaining elasticity solutions for shell buckling is the existence of
three-dimensional elasticity solutions to the pre-buckling problem.
For the monolithic homogeneous cylindrical shells, the elasticity
solutions for orthotropy provided by Lekhnitskii �12� were used,
whereas for the sandwich shells, the elasticity solution of Kardo-
mateas �13� was used.

In this paper we again make the simplifying assumption of a
two-dimensional problem by considering a wide plate. Because
the plate is wide, lines along the long dimension can be taken as

uncurved during buckling and the problem reduces to two-
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dimensional �equivalent to a beam rather than a plate assumption�.
This assumption would also allow for a direct comparison with
the wrinkling formulas that exist in the literature.

In the beginning, the elasticity solution for the pre-buckling
state is derived for the case of a sandwich plate with generally
orthotropic phases under axial loading. Subsequently, the govern-
ing buckling equations along with the corresponding boundary
conditions are derived. These reduce to an eigen-boundary value
problem for differential equations with the axial load being the
eigenvalue. The complication in the sandwich construction arises
due to the existence of additional “internal” conditions at the face
sheet/core interfaces. The shooting method is used to solve the
problem thus formulated.

2 Formulation
By considering the equations of equilibrium in terms of the

second Piola-Kirchhoff stress tensor, subtracting these at the per-
turbed and initial conditions, and making order of magnitude as-
sumptions on the products of stresses and strains/rotations, based
on the fact that a characteristic feature of stability problems is the
shift from positions with small rotations to positions with rota-
tions substantially exceeding the strains, the buckling equations
for a Cartesian coordinate system can be obtained �Novozhilov
�14��:

Fig. 1 Definition of the geometry for a sandwich wide panel/
beam under axial compression
Fig. 2 Buckling modes
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�y
��yy − �yz

0 �x + �xy
0 �z� +

�

�z
��yz − �zz

0 �x

+ �xz
0 �z� = 0, �1b�

�

�x
��xz − �xx

0 �y + �xy
0 �x� +

�

�y
��yz + �yy

0 �x − �xy
0 �y� +

�

�z
��zz

− �xz
0 �y + �yz

0 �x� = 0. �1c�

In the previous equations, �ij
0 are the values of stresses at the

initial equilibrium position �pre-buckling state�, and �ij and � j are
the values of stresses and rotations at the perturbed position
�buckled state�.

The boundary conditions associated with Eq. �1� can be ob-
tained from the traction �stress resultant� relationships in terms of
the second Piola-Kirchhoff stress tensor, and in the general case of
an external hydrostatic pressure loading �in which case the mag-
nitude of the surface load remains invariant under deformation,
but its direction changes�. By writing these equations for the ini-
tial and the perturbed equilibrium position and then subtracting
them and using the previous arguments on the relative magnitudes
of the rotations, the following boundary conditions on a surface

which has outward unit normal �l̂ , m̂ , n̂� and is under the action of
a hydrostatic pressure, p, are obtained �14�:

��xx − �xy
0 �z + �xz

0 �y�l̂ + ��xy − �yy
0 �z + �yz

0 �y�m̂ + ��xz + �zz
0 �y

− �yz
0 �z�n̂ = p��zm̂ − �yn̂� , �2a�

��xy + �xx
0 �z − �xz

0 �x�l̂ + ��yy − �yz
0 �x + �xy

0 �z�m̂ + ��yz − �zz
0 �x

+ �xz
0 �z�n̂ = p��xn̂ − �zl̂� , �2b�

��xz − �xx
0 �y + �xy

0 �x�l̂ + ��yz + �yy
0 �x − �xy

0 �y�m̂ + ��zz − �xz
0 �y

+ �yz
0 �x�n̂ = p��yl̂ − �xm̂� . �2c�

For the bounding surfaces, l̂= m̂=0 and n̂= ±1. These condi-
tions will also be used when we impose traction continuity at the
core/face sheet interfaces.

2.1 Pre-buckling State. Let us assume general orthotropy for
the face sheet, i= f , or the core, i=c:

�
�xx

�i�

�yy
�i�

�zz
�i�

�yz
�i�

�xz
�i�

�xy
�i�

� = �
c11

i c12
i c13

i 0 0 0

c12
i c22

i c23
i 0 0 0

c13
i c23

i c33
i 0 0 0

0 0 0 c44
i 0 0

0 0 0 0 c55
i 0

0 0 0 0 0 c66
i

��
�xx

�i�

�yy
�i�

�zz
�i�

�yz
�i�

�xz
�i�

�xy
�i�

� �i = f ,c� �3�

where ckl
i are the stiffness constants �we have used the notation

1�x ,2�y ,3�z, see Fig. 1�.
Assuming a pre-buckling displacement field in the form:

u0 = Pd1x; v0 = Pd2y ; w0 = P�d3
z3

3
+ d4z	 , �4a�

would satisfy the displacement continuity conditions at face-sheet/
core interfaces and the symmetry conditions.

Substituting into the strain-displacement and then stress-strain

relations �3�, leads to zero shear strains and stresses:
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�xy
0 = �xz

0 = �yz
0 = 0, �4b�

and normal pre-buckling stresses in the form �for i= f ,c�:

�xx
0�i� = P�c11

i d1 + c12
i d2 + c13

i �d3z2 + d4�� , �4c�

�yy
0�i� = P�c12

i d1 + c22
i d2 + c23

i �d3z2 + d4�� , �4d�

�zz
0�i� = P�c13

i d1 + c23
i d2 + c33

i �d3z2 + d4�� . �4e�

Notice that it is easily seen that the stresses in Eqs. �4b�–�4e�
produce no resultant moment. The constants d1 ,d2 ,d3, and d4 can
be found as follows.

First, the condition of zero tractions at the bounding surfaces,
�zz=0, i.e., at z= ± �c+ f�, gives

c13
f d1 + c23

f d2 + c33
f �d3�c + f�2 + d4� = 0. �4f�

Second, the condition of zero resultant force on the bounding
sides normal to the y axis, 
�yywdz=0, at y=0,w, gives

�c12
f f + c12

c c�d1 + �c22
f f + c22

c c�d2 + �c23
f ��c + f�3 − c3� + c23

c c3�d3

3

+ �c23
f f + c23

c c�d4 = 0. �4g�
Third, the condition of the resultant applied compressive load,

P, on the bounding sides normal to the x axis, 
�xxwdz=−P, i.e.,
at x=0,L, gives

�c11
f f + c11

c c�d1 + �c12
f f + c12

c c�d2 + �c13
f ��c + f�3 − c3� + c13

c c3�d3

3

+ �c13
f f + c13

c c�d4 = −
1

2w
. �4h�

Finally, traction continuity at the face-sheet/core interface, i.e.,
at z= ±c, requires �zz

c =�zz
f , i.e., the fourth condition:

c13
f d1 + c23

f d2 + c33
f �d3c2 + d4� = c13

c d1 + c23
c d2 + c33

c �d3c2 + d4� .

�4i�
Therefore, there are four linear algebraic equations, Eqs.

�4f�–�4i�, which can be used to determine the four unknowns,
d1 ,d2 ,d3, and d4.

Notice that if the phases are isotropic, with Young’s modulus,
Ei and Poisson’s ratio �i then,

c11
i = c22

i = c33
i =

1 − �i

�1 − 2�i��1 + �i�
Ei, �4j�

c12
i = c13

i = c23
i =

�i

�1 − 2�i��1 + �i�
Ei �4k�

2.2 Perturbed State. The buckling equations �1� can be writ-
ten in terms of the buckling displacemenis u ,v, and w by using
the strain vs displacement relations:

�xx = u,x, �yy = v,y, �zz = w,z, �5a�

�xy = u,y + v,x, �xz = u,z + w,x, �yz = v,z + w,y , �5b�

and rotation vs displacement relations:

2�x = w,y − v,z, 2�y = u,z − w,x, 2�z = v,x − u,y , �5c�

and then using the stress-strain relations �3�. The following three
equations are obtained for zero pre-buckling shear stresses. These
equations apply at every point through the thickness, but for con-
venience we have dropped the superscript i,

c11u,xx + �c66 −
�yy

0

2
	u,yy + �c55 +

�zz
0

2
	u,zz + �c12 + c66 −

�yy
0

2
	v,xy

+ �c13 + c55 −
�zz

0 	w,xz +
�zz,z

0

�u,z − w,x� = 0, �6a�

2 2
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c22v,yy + �c66 +
�xx

0

2
	v,xx + �c44 +

�zz
0

2
	v,zz + �c12 + c66 −

�xx
0

2
	u,xy

+ �c44 + c23 −
�zz

0

2
	w,yz +

�zz,z
0

2
�v,z − w,y� = 0, �6b�

c33w,zz + �c55 +
�xx

0

2
	w,xx + �c44 +

�yy
0

2
	w,yy + �c13 + c55 −

�xx
0

2
	u,xz

+ �c44 + c23 −
�yy

0

2
	v,yz = 0. �6c�

The corresponding from Eqs. �2a�–�2c� traction boundary con-

ditions at the bounding surfaces for l̂= m̂=0 and n̂=1 are

�c55 +
�zz

0

2
	u,z + �c55 −

�zz
0

2
	w,x = 0, �7a�

�c44 −
�zz

0

2
	w,y + �c44 +

�zz
0

2
	v,z = 0, �7b�

c13u,x + c23v,y + c33w,z = 0 �7c�
In the petrurbed position we seek two-dimensional equilibrium

modes as follows:

ui = Ui�z�cos �x; vi = 0; wi = Wi�z�sin �x, � =
m�

L
i = f ,c

�8�
Substituting into Eq. �7�, results in the following two linear

homogeneous ordinary differential equations of the second order
for Ui�z� ,Wi�z�, where i=c for 0	z	c and i= f for c	z	 �c
+ f�:

�c55
�i� +

�zz
0�i�

2
	Ui� +

�zz,z
0�i�

2
Ui� − c11

�i��2Ui + �c13
�i� + c55

�i� −
�zz

0�i�

2
	�Wi�

−
�zz,z

0�i�

2
�Wi = 0, �9a�

and

c33
�i�Wi� − �c55

�i� +
�xx

0�i�

2
	�2Wi − �c13

�i� + c55
�i� −

�xx
0�i�

2
	�Ui� = 0.

�9b�
The associated boundary conditions are as follows.
�a� At the bounding surfaces, z=c+ f , we have the following

two traction-free conditions:

c55
�f�Uf� + c55

�f��Wf = 0, �10a�

c33
�f�Wf� − c13

�f��Uf = 0 �10b�

�b� At the face-sheet/core interface, z=c, we have the following
four conditions at each of the interfaces.
Displacement continuity:

Uf = Uc; Wf = Wc. �10c�

Traction continuity:

�c55
�f� +

�zz
0

2
	Uf� + �c55

�f� −
�zz

0

2
	�Wf

= �c55
�c� +

�zz
0 	Uc� + �c55

�c� −
�zz

0 	�Wc, �10d�

2 2
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c33
�f�Wf� − c13

�f��Uf = c33
�c�Wc� − c13

�c��Uc. �10e�

�c� At the axis of symmetry, z=0, we have the following condi-
tions.
For symmetric wrinkling:

Uc� = Wc = 0, symmetric wrinkling �10f�

For antisymmetric wrinkling:

Uc = Wc� = 0, antisymmetric wrinkling �10g�
Notice that since the construction is assumed to be symmetric,

only half of the sandwich needs to be considered.
Solution of the eigen-boundary-value problem for differential

equations. Equations �9� and �10� constitute an eigenvalue prob-
lem for differential equations, with the axial load, P, the param-
eter �two point boundary value problem�. An important point is
that the pre-buckling stresses � j j

0�i��z�, depend linearly on the ap-
plied axial load, P �the parameter�, through expressions in the
form of Eq. �4� and this makes possible the direct application of
standard solution techniques.

With respect to the method used there is a difference between
the present problem and the homogeneous orthotropic body �apart
from being shell geometry� solved by Kardomateas �6�. The com-
plication in the present problem is due to the fact that the displace-
ment field is continuous but has a slope discontinuity at the face-
sheet/core interfaces. This is the reason that the displacement field
was not defined as one function but as two distinct functions for
i= f , and i=c, i.e., the face sheet and the core. Our formulation of
the problem employs, hence, “internal” boundary conditions at the
face-sheet/core interface, as outlined earlier. Due to this compli-
cation, the shooting method �Press et al. �15�� was deemed to be
the best way to solve this eigen-boundary-value problem for dif-
ferential equations. A special version of the shooting method was
formulated and programmed for this problem. In fact, for each of
the two constituent phases of the sandwich structure, we have five
variables: y1=Ui ,y2=Ui� ,y3=Wi ,y4=Wi�, and y5= P. The five dif-
ferential equations are: y1�=y2, the first equilibrium equation �9a�,
y3�=y4, the second equilibrium equation �9b� and y5�=0.

The method starts from the middle of the core, z=0 and inte-
grates the five first-order differential equations from z=0 to the
face-sheet/core interface z=c �i.e., through the core�. At the start
point, z=0, we have three conditions as follows:

�a� for symmetric wrinkling: Uc�=y2=0,Wc=y3=0 and a third
condition of �abritrarily� setting Uc=y1=1.0, therefore we
have two freely specifiable variables, the P=y5 and the
Wc�=y4.

�b� for antisymmetric wrinkling: Uc=y1=0,Wc�=y4=0 and a
third condition of �abritrarily� setting Wc=y3=1.0, there-
fore we have two freely specifiable variables, the P=y5
and the Uc�=y2.

The freely specifiable starting values at z=0 are taken as the
values from the simple plate/beam theory solutions available in
the literature �described later�.

Once we reach the face-sheet/core interface, z=c, the tractions
from the core side are calculated; these should equal the tractions
from the face-sheet side, according to the internal boundary con-
ditions on the face-sheet/core interface, Eqs. �10d� and �10e�. This
allows finding the slopes of the displacements, y2=Uf� and y4
=Wf� for starting the shooting into the face-sheet �notice that the
other three functions, y1=Uf ,y3=Wf and y5= P are continuous
according to Eq. �10c�, and their values at z=c have already been
found at the end of the integration step through the core�. The next
step is integrating the five differential equations from z=c to z
=c+ f , i.e., through the face-sheet. Once the outer bounding sur-
face, z=c+ f , is reached, the traction boundary conditions, Eqs.
�10a� and �10b�, are imposed. Multi-dimensional Newton-

Raphson is then used to develop a linear matrix equation for the
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two increments to the adjustable parameters, which are the y5 and
y4 at z=0 for the case of symmetric wrinkling, and the the y5 and
y2 at z=0 for the case of antisymmetric wrinkling. These incre-
ments are solved for and added and the shooting repeats until
convergence. For the integration phase, we used a Runge-Kutta
driver with adaptive step size control. The method produced re-
sults very fast and without any numerical complication.

As has already been stated, in the numerical scheme, the start-
ing point �guess� is one of the simple formulas in the literature; in
particular, we have used Allen’s �4� solution; therefore, we input
the Allen’s �4� solution as a guess and then obtain the elasticity
solution by the shooting method described; this is done for a range
of m’s, around Allen’s critical m. Therefore, we vary m in the
range of ±20 of the Allen’s critical m �of course, the lower bound
for m is m=1� and obtain the corresponding load; the critical m is
the one that results in the lowest load �critical value�.

Furthermore, for the integration phase we use a Runge-Kutta
driver with monitoring of local truncation error to ensure accuracy
and adjust step size; the initial step size to be attempted is 1 /20th
of the corresponding thickness �core or face sheet� and the nu-
merical tolerance is 5
10−6. A finer initial step size or tolerance
has indicated absolutely no effect on the solution.

3 Plate/Beam Wrinkling Formulas in the Literature,
Results and Discussion

Several formulas can be found in the literature for the critical
wrinkling load. Allen’s book �4� devotes a whole chapter on the
problem. A simple formula can be found in this book for the
critical stress for isotropic core and face-sheet. Allen’s formula �4�
is based on a beam differential equation for the face sheet, as-
sumed to be supported by an elastic medium �the core�, which
extends infinitely on one side of the beam �hence the face is un-
affected by the opposing face�:

� f ,cr = B1Ef
1/3Ec

2/3; where B1 = 3�12�3 − �c�2�1 + �c�2�−1/3,

�11a�

�m�f

L
	

cr

=
�

C
�Ef

Ec
	−1/3

; where C = ���3 − �c��1 + �c�/12�1/3.

�11b�
Goodier and Neou �2� give the following formula for isotropic

core with �c=0 and face-sheet with � f =1/3, where �=Ef /Ec.

� f ,cr

Ef
= 0.655�−2/3�1 +

0.51�1/3 + 0.32

�2/3 + 0.39
	, and �m�f

2L
	

cr

= 0.726�−1/3. �11c�

Hoff and Mautner �1� give the following simple formula:

� f ,cr = 0.91�EfEcGc�1/3; �m�f

L
	

cr

=
�

1.65
Ef

−1/3�EcGc�1/6.

�11d�
Although variations of this formula can be developed depend-

ing on symmetric or antisymmetric cases and also for thinner
cores, Hoff and Mautner �1� concluded from their analysis that the
very simple formula of Eq. �11d� is a conservative estimate of the
critical load for all cases.

Although there are other formulas in the literature, such as
Plantema’s �16�, there seem to introduce only small variations and
the aforementioned three formulas will be taken herein as repre-
sentative and compared with. In particular, Plantema’s �16� critical
load is:

� f ,cr =
0.825

3 2
3 EfEcGc. �11e�
1 − � f
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For � f =0.35 �the value used for the isotropic results�, the factor
before the moduli product term becomes 0.862, which, when com-
pared with the value 0.91 of the Hoff and Mautner �1� formula,
would give a critical load 5.3% lower. For the orthotropic face
sheet with � f =0.26, the factor becomes 0.844, which would give a
critical load 7.2% lower than the Hoff and Mautner �1� formula.

A few recent related studies will be mentioned at this point.
Vonach and Rammerstorfer �17� have also addressed the problem
of wrinkling of orthotropic sandwich plates under general loading.
They tackle the problem by assuming the core to be infinitely
thick and transversely isotropic and the wrinkling wave at the
interface between the face sheet and the core to be sinusoidal.
Thereafter they are able to solve the governing differential equa-
tion �based on plate theory� describing the face sheets deforma-
tion. Another related study is that by Grenestedt and Olsson �18�,
which assumes two layers of different materials attached to a
semi-infinite substrate of a third material and treats the problem
from an elasticity theory. These studies make in general less re-
strictive assumptions than the old formulas and utilize more ad-
vanced methods of analysis but, nevertheless, they still do not
correspond to the configuration of a finitely thick core between
two finitely thick face sheets, which is studied in this paper.

As far as global buckling, the Euler load is simply

PEul =
�2�EI�eq

L2 �EI�eq = 2w�Ef
f3

12
+ Ef f� f

2
+ c	2

+ Ec
c3

3
� .

�12a�
A formula correcting for transverse shear is in Allen’s book �4� as
follows:

Pgl =
PE

1 + �PE2c/Gcw�2c + f�2�
; PE = Efwf�2c + f�2 �2

2L2 .

�12b�

Results are produced for the following configuration: L /h=5
where h=2�f +c� is the total plate thickness and f /h=0.01 to 0.05
�we also assigned the width w /L=2�.

First, the case of both faces being isotropic, is examined. There-
fore, we first consider isotropic phases, Ef /Ec=1000 and 500, � f
=0.35 and �c=0.

Table 1 shows the critical load for Ef /Ec=1,000 and Table 2 for
Ef /Ec=500. Before discussing the results, it should be noticed
that these results have been derived for the isotropic phases with
�c=0, because this has been historically emphasized.

In general, we can make the following conclusions for the iso-

Table 1 Critical loads for Ef /Ec=1,000. Loads normalized with
the Euler load „w/o shear…, Eq. „12a… W=wrinkling „multi-wave…;
GL=global „Euler….

f /h P̃Elast P̃Allen
W P̃Goodier

W P̃Hof f
W P̃Allen

GL

�m� �m� �m� �m�
�% difference from elasticity�

0.01 0.07381 0.06724 0.07368 0.07709 0.2021
Antisymm �24� �W� �25� �23� �27�

�−8.9% � �−0.2% � �+4.4% � �+173.8% �
0.02 0.07393 0.06753 0.07400 0.07742 0.1156
Antisymm �12� �W� �13� �12� �13�

�−8.7% � �+0.1% � �+4.7% � �+56.4% �
0.03 0.07288 0.06854 0.07511 0.07859 0.08199
Antisymm �7� �W� �8� �8� �9�

�−6.0% � �+3.1% � �+7.8% � �+12.5% �
0.04 0.06489 0.06977 0.07646 0.07999 0.06414
Antisymm �1� �GL� �6� �6� �7�

�+7.5% � �+17.8% � �+23.3% � �−1.2% �
0.05 0.05411 0.07110 0.07792 0.08152 0.05310
Antisymm �1� �GL� �5� �5� �5�

�+31.4% � �+44.0% � �+50.7% � �−1.9% �
tropic case:
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�1� The Goodier and Neou �2� formula is the most accurate;
next in accuracy is Hoff and Mautner �1�. In both cases the
accuracy is improved for the thinner face sheets, i.e., for the
smaller f /h ratios.

�2� For the cases considered where wrinkling dominates, the
Goodier and Neou �2� formula is within 5% of the elasticity
value.

�3� For the cases considered, and whenever global buckling
dominates, the Allen’s global buckling formula �4� which
corrects for transverse shear, performs very well, being
within 2% of the elasticity critical load.

�4� It is possible that the global buckling load is less than the
wrinkling formulas, as in the case of Ef /Ec=500, f /h
=0.04, in which PAllen

GL is less than PGoodier
W ; yet wrinkling

dominates according to the elasticity solution. Although the
exact mode of buckling may not be the most important
issue, this indicates the complexity and the difficulty of
drawing the right conclusions when only simple formulas
are employed.

�5� Allen’s �4� formula is conservative whenever wrinkling
dominates. On the contrary, Hoff and Mautner’s �1� for-
mula is non-conservative whenever wrinkling dominates.
But the amount of non-conservatism is quite moderate.

�6� Whenever global buckling dominates, Allen’s �4� formula
which corrects the Euler load for transverse shear, is con-
servative.

�7� Whenever global buckling dominates, the critical load be-
ing only 5%–10% of the Euler load �w/o shear� indicates
the very strong influence of transverse shear effects on
sandwich buckling.

�8� Antisymmetric buckling seems to dominate in the cases
considered.

Next, the case of either or both phases being orthotropic is
examined.

Table 3 gives results for E-glass/polyester unidirectional facings
and R75 cross-linked PVC foam core. E-glass/polyester facings
moduli are �in GPa�: E1

f =40,E2
f =E3

f =10,G23
f =3.5,G12

f =G31
f =4.5;

and the facings Poisson’s ratios: �12
f =0.26,�23

f =0.40, and �31
f

=0.065. The PVC core is isotropic with modulus Ec=0.075 GPa
and Poisson’s ratio �c=0.30.

Since the axial modulus ratio of the facings and the core is
close to 500, the results of Table 3 can be compared with the
results of Table 1. In Table 3, the facings are orthotropic rather
than isotropic and the core, although isotropic, does not have zero

Table 2 Critical loads for Ef /Ec=500. Loads normalized with
the Euler load „w/o shear…, Eq. „12a… W=wrinkling „multi-wave…;
GL=global „Euler….

f /h P̃Elast P̃Allen
W P̃Goodier

W P̃Hof f
W P̃Allen

GL

�m� �m� �m� �m�
�% difference from elasticity�

0.01 0.1222 0.1100 0.1222 0.1261 0.3302
Antisymm �30� �W� �32� �29� �34�

�−10.0% � �0%� �+3.2% � �+170.2% �
0.02 0.1210 0.1089 0.1210 0.1248 0.2056
Antisymm �15� �W� �16� �15� �17�

�−10.0% � �0%� �+3.1% � �+69.4% �
0.03 0.1211 0.1099 0.1222 0.1261 0.1508
Antisymm �10� �W� �11� �10� �11�

�−9.2% � �+0.9% � �+4.1% � �+24.5% �
0.04 0.1188 0.1116 0.1241 0.1280 0.1201
Antisymm �6� �W� �8� �7� �9�

�−6.1% � �+4.5% � �+7.7% � �+1.1% �
0.05 0.1027 0.1136 0.1262 0.1302 0.1006
Antisymm �1� �GL� �6� �6� �7�

�+10.6% � �+22.9% � �+26.8% � �−2.0% �
Poisson’s ratio. We can conclude that:
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�9� The Goodier and Neou �2� formula no longer exhibits the
excellent accuracy that was shown in Table 1. Notice,
though, that this formula was derived for isotropic phases
with �c=0. In fact, in Table 3, this formula has the worst
performance although in Table 1 it had the best perfor-
mance whenever wrinkling occurred.

�10� Allen’s �4� formula is still conservative whenever wrin-
kling dominates. On the contrary, all other wrinkling for-
mulas are non-conservative �again, whenever wrinkling
dominates�.

�11� Global buckling occurs sooner now, even for f /h=0.04.
�12� Whenever global buckling dominates, Allen’s �4� formula,

which corrects the Euler load for transverse shear, is still
conservative.

Table 4 gives results for graphite/epoxy unidirectional facings
and hexagonal glass/phenolic honeycomb core. The graphite/
epoxy facings moduli are �in GPa�: E1

f =181,E2
f =E3

f =10.3,G23
f

=5.96,G12
f =G31

f =7.17; and the facings Poisson’s ratios: �12
f

=0.28,�23
f =0.49, and �31

f =0.0159. The honeycomb core moduli
are �in GPa�: E1

c =E2
c =0.032,E3

c =0.390,G23
c =G31

c =0.048,G12
c

=0.013; and the core Poisson’s ratios: �31
c =�32

c =�21
c =0.25.

Table 3 Critical loads for E-glass/polyester faces and PVC/R75
foam core. Loads normalized with the Euler load „w/o shear…,
Eq. „12a… W=wrinkling „multi-wave…; GL=global „Euler…

f /h P̃Elast P̃Allen
W P̃Goodier

W P̃Hof f
W P̃Allen

GL

�m� �m� �m� �m�
�% difference from Elasticity�

0.01 0.1023 0.09454 0.1165 0.1103 0.2636
Antisymm �30� �W� �30� �28� �32�

�−7.6% � �+13.9% � �+7.8% � �+157.7% �
0.02 0.1012 0.09375 0.1155 0.1093 0.1576
Antisymm �15� �W� �15� �14� �16�

�−7.4% � �+14.1% � �+8.0% � �+55.7% �
0.03 0.1008 0.09473 0.1167 0.1105 0.1136
Antisymm �9� �W� �10� �9� �11�

�−6.0% � �+15.8% � �+9.6% � �+12.7% �
0.04 0.09096 0.09620 0.1185 0.1122 0.08967
Antisymm �1� �GL� �7� �7� �8�

�+5.8% � �+30.3% � �+23.4% � �−1.4% �
0.05 0.07596 0.09790 0.1206 0.1142 0.07464
Antisymm �1� �GL� �6� �6� �6�

�+28.9% � �+58.8% � �+50.3% � �−1.7% �

Table 4 Critical loads for graphite/epoxy faces and glass/
phenolic honeycomb core. Loads normalized with the Euler
load „w/o shear…, Eq. „12a… W=wrinkling „multi-wave…;
GL=global „Euler….

f /h P̃Elast P̃Allen
W P̃Goodier

W P̃Hof f
W P̃Allen

GL

�m� �m� �m� �m�
�% difference from Elasticity�

0.01 0.07037 0.01884 0.02209 0.02196 0.03517
Antisymm �26� �W� �14� �13� �15�

�−73.2% � �−68.6% � �−68.8% � �−50.0% �
0.02 0.06552 0.01917 0.02247 0.02234 0.01826
Antisymm �1� �GL� �7� �6� �7�

�−70.7% � �−65.7% � �−65.9% � �−72.1% �
0.03 0.04576 0.01955 0.02291 0.02278 0.01253
Antisymm �1� �GL� �5� �4� �5�

�−57.3% � �−49.9% � �−50.2% � �−72.6% �
0.04 0.03577 0.01994 0.02337 0.02324 0.00963
Antisymm �1� �GL� �3� �3� �4�

�−44.3% � �−34.7% � �−35.0% � �−73.1% �
0.05 0.02988 0.02035 0.02385 0.02372 0.00789
Antisymm �1� �GL� �3� �3� �3�

�−31.9% � �−20.2% � �−20.6% � �−73.6% �
Journal of Applied Mechanics
In this case the axial modulus ratio of the facings and the core
is very large, close to 5,000. Notice also that in Table 4 both
facings and the core are orthotropic. The results show clearly the
inadequacy of the simple wrinkling formulas and even the global
buckling formula whenever a strongly orthotropic construction is
made. In particular we can conclude that:

�13� Global buckling occurs even sooner now, even for f /h
=0.02. Actually, only in the f /h=0.01 case, wrinkling
dominates.

�14� All formulas are strongly conservative. Whenever global
buckling dominates, Allen’s �4� formula shows a very
large degree of conservatism, being almost one quarter of
the elasticity critical load. The same is true whenever
wrinkling dominates, the wrinkling formulas show a very
large degree of conservatism, being almost a quarter of the
elasticity critical wrinkling load.

The thickness-wise variation of the displacements has been a
matter of great interest. Hoff and Mautner �1� based their analysis
on a linear decay of the transverse displacement, W�z�, whereas
Plantema �16� based his analysis on an exponential decay. Figure
3�a� shows the transverse displacement, W�z� and Fig. 3�b� shows
the axial displacement, U�z�, for the two cases of isotropic phases,
f /h=0.02 and at the critical point. Since the modes are derived by
setting the core displacement at the middle, Wc=1, the displace-
ments are normalized with the corresponding mid-point �z=0�
transverse displacement of the core, Wc0. We see that the variation
is certainly nonlinear through the core in both W�z� and U�z�. The
W�z� has a high slope gradient near the core mid-line, z=0.

Figures 4�a� and 4�b� show the same displacements for the two
cases of orthotropic phases examined and f /h=0.01 and at the
critical point. Double y-axis plots were used in this case because
the scales for the two material systems are very much apart. The
displacements are again normalized with the corresponding mid-
point �z=0� transverse displacement of the core, Wc0. We see that,
again, the variation is nonlinear through the core, in both W�z� and
U�z� and the W�z� has again a high slope gradient near the core
mid-line, z=0. A comparison of the isotropic and the orthotropic
plots shows that the nonlinearities are more pronounced in the
latter case.

A literature search has not revealed detailed finite element data
on the wrinkling of sandwich plates �based on solid elements�,
which can be used to compare with the present solution. This
indicates that there is a need for numerical studies of wrinkling,
based on various finite element �or other numerical� formulations.
In this regard, the present elasticity solution will serve to compare
the accuracy of the various numerical approaches. We can, how-
ever, obtain a validation of the solution developed in this paper by
comparing with the early buckling experiments performed in 1945
by Hoff and Mautner �1�. In these experiments, the face sheet
material was a high strength paper plastic �papreg, isotropic with
Young’s modulus 3
106 lb per in.2�. The sandwich specimens
had a cellular acetate core, also isotropic with Young’s modulus
1,500 lb per in.2 �for both the face sheet and the core, the Pois-
son’s ratio used in the analysis was 0.30�. The length of all the
specimens in the direction of the applied load, L, was 10.5 in. The
width of the specimens perpendicular to the direction of the ap-
plied load, w, varied as well as the thickness of the face sheet and
that of the core. Table 5 shows the critical load, as predicted from
Hoff’s formula �Eq. �11d�� and from the present elasticity formu-
lation for the observed mode of buckling. We can conclude that, in
general, the present elasticity solution predicts loads closer to the
experimentally measured values. In some cases, where the critical
half-wave numbers, m, are high and close to each other, the elas-
ticity and the Hoff’s solution do not differ practically �as in the
third and fourth cases in Table 5�. In other cases, the Hoff’s solu-
tion would be very non-conservative �as in the fifth and seventh

cases in Table 5� and it would predict wrinkling at half-wave
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numbers, m, which are much higher than the elasticity solution;
the latter being much closer to the experiments. Note that Hoff
and Mautner’s paper �1� does not report data on the experimental
half wave numbers. The data in Table 5 can be considered as
offering a validation of the accuracy of the present solution.

The intent of this study was to focus on the wrinkling behavior
of sandwich beams �or wide plates�, hence the illustrative ex-
amples were for very thin facings. Future elasticity studies will
focus on the global buckling behavior which is expected to domi-

Fig. 3 „a… Thickness-wise variation of the transverse displace-
ment, W, for isotropic phases and f /h=0.02 „at the critical
point…. The displacement is normalized with the mid-point „z
=0… transverse displacement of the core, Wc0. „b… Thickness-
wise variation of the axial displacement, U, for isotropic phases
and f /h=0.02 „at the critical point…. The displacement is normal-
ized with the mid-point „z=0… transverse displacement of the
core, Wc0.
nate with thicker facings.
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4 Conclusions
An elasticity solution to the problem of buckling of sandwich

beams or wide sandwich panels subjected to axially compressive
loading is presented. A symmetric section is considered with all
constituent phases, i.e., the facings and the core, being in general
orthotropic. For the configurations considered with both phases
isotropic, the Goodier and Neou �2� wrinkling formula is the most
accurate, next in accuracy being the Hoff and Mautner �1� and in
both cases the accuracy improved for the thinner face sheets. Fur-
thermore, whenever wrinkling dominates, Allen’s �4� formula is

Fig. 4 „a… Thickness-wise variation of the transverse displace-
ment, W, for the orthotropic phases examined and f /h=0.01 „at
the critical point…. The displacement is normalized with the cor-
responding mid-point „z=0… transverse displacement of the
core, Wc0. „b… Thickness-wise variation of the axial displace-
ment, U, for the orthotropic phases examined and f /h=0.01 „at
the critical point…. The displacement is normalized with the cor-
responding mid-point „z=0… transverse displacement of the
core, Wc0.
always conservative but the Hoff and Mautner’s �1� wrinkling
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formula is slightly non-conservative. Whenever global buckling
dominates, Allen’s �4� global buckling formula, which corrects the
Euler load for transverse shear, is conservative and moreover, the
critical load is only 5%–10% of the Euler load �w/o shear�, indi-
cating the very strong influence of transverse shear effects on
sandwich buckling. Antisymmetric buckling seems to be dominant
in the cases considered. With the ortotropic �rather than isotropic�
phases examined, wrinkling is harder to occur, global buckling
taking place for even thinner face sheets. But now the accuracy of
the simple wrinkling and global buckling formulas is seriously
compromised, and there are large deviations from the elasticity
solution. In particular, for the graphite/epoxy facings and glass/
phenolic honeycomb core, whenever global buckling dominates,
Allen’s �4� global buckling formula shows a very large degree of
conservatism, being almost one quarter of the elasticity critical
load. The same is true for this material system whenever wrin-
kling dominates, the simple wrinkling formulas show a very large
degree of conservatism, being almost a quarter of the elasticity
critical wrinkling load. In addition, the results show that the varia-
tion of both the transverse and axial displacement through the core
is nonlinear, more so with the orthotropic phases, and with the
transverse displacement exhibiting a high slope gradient near the
core mid-line. The solution presented herein provides a means of
accurately assessing the limitations of simplifying analyses in pre-
dicting wrinkling and global buckling in wide sandwich panels/
beams.
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Dynamic Analysis of the Optical
Disk Drives Equipped with an
Automatic Ball Balancer with
Consideration of Torsional
Motions
This study is dedicated to evaluate the performance of an automatic ball-type balancer
system (ABS) installed in optical disk drives (ODDs) with consideration of the relative
torsional motion between the ODD case and the spindle-disk-ABS-turntable system, not-
ing that the turntable is the supporting plate structure for disk, pickup, and spindle motor
inside the ODD. To this end, a complete dynamic model of the ABS considering the
torsional motion is established with assuming finite torsional stiffness of the damping
washers, which provides suspension of the spindle-disk-ABS-turntable system to the ODD
case. Considering the benchmark case of a pair of balancing balls in an ABS, the method
of multiple scales is then applied to formulate a scaled model for finding all possible
steady-state solutions of ball positions and analyzing corresponding stabilities. The re-
sults are used to predict the levels of residual vibration, with which the performance of
the ABS can then be reevaluated. Numerical simulations are conducted to verify theoret-
ical results. It is deduced from both analytical and numerical results that the spindle
speed of an ODD could be operated above both primary translational and secondary
torsional resonances in order to guarantee stabilization of the desired balanced solution
for a substantial vibration reduction. �DOI: 10.1115/1.2041659�
1 Introduction
In optical disk drives �ODDs�, substantial radial vibrations of-

ten occur due to the inherent imbalance of the rotating rotor-disk
assembly at high speeds. These vibrations would cause excessive
oscillatory vibrations of the objective lens suspended by four
wires inside the pickup, leading to great difficulty in data reading.
Common remedies for these vibrations are the installation of the
damping washers between inner electromechanical components
and the outer case of an ODD. With the washers, residual vibra-
tions can be reduced and/or isolated, but not eliminated, from the
outer case of ODDs. Contrary to the dampers, the automatic bal-
ancer system �ABS�, consisting physically of free-running balls
inside races, is a device capable of almost eliminating radial vi-
brations by a different concept of counter-balance. This is based
on the fact that as the operating speed of the ODD spindle exceeds
the translational resonant frequency of damping washers, the balls
inside the race could reside at appropriate positions due to the
centrifugal field induced by rotor rotation such that a significant
counter-balancing effect is achieved �1�.

Some studies were conducted to explore the capability of ball
balancers. Thearle �2,3� showed the excellence of ball balancers in
vibration reduction. Inoue et al. �4� utilized numerical methods to
analyze the dynamics of a rotor/balancer system assuming a con-
stant speed. Bövik and Högfors �5� showed that the auto-balancers
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until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.

826 / Vol. 72, NOVEMBER 2005 Copyright ©
were applicable to planar and nonplanar vibrating rotors. Jinnou-
chi et al. �6� concluded that ball balancers provide excellent bal-
ancing above the critical speed, but lead to moderate vibrations at
low speeds. Majewski �7� found the negative effects of ball rolling
resistance, race eccentricity, and external vibrations on the rotor/
balancer system at steady state. Rajalingham and Rakheja �8� first
considered the contact friction of balancing balls in the model for
analysis. Hwang and Chung �9� used the variational method to
derive equations of motion in polar coordinate. Huang et al. �10�
successfully conducted dynamics analysis on the ball balancer and
computed corresponding residual vibrations based on steady-state
solutions solved. Kang et al. �1� utilized methods of perturbation
and multiple scales to find steady-state solutions and determine
their stabilities for the ABS equipped with a pair of balancing
balls. Sung et al. �11� presented a nonplanar dynamic model of the
ABS along with experimental data in order to conduct a more
realistic analysis on ABS performance.

Despite a number of researches having been conducted for a
better understanding of the ABS dynamics in an ODD, the tor-
sional motion of the turntable—a plate supporting the spindle,
disk, and ABS through damping washers—was not considered
until Kim and Chung �12� reported related analytical work and
Sung et al. �11� evidenced the secondary torsional resonance along
with the first translational one in experiment. Note that since the
supporting plate �the turntable� is seldom seen in other spindle
applications of an ABS, such as machine tools and a washing
machine, the torsional motion considered in this study is a unique
dynamic feature of optical disk drives. In �12�, a dynamic model
concerning torsion was established with focus only on the desired
balanced solution and its stability is determined based on a nu-
merical method to distill favorable operation guidelines for sub-
stantial vibration reduction. However, due to the nonlinear nature
of the system that multiple stable solutions might coexist, the
method of multiple scales along with modal transformation is

adopted herein to find all possible steady-state solutions of ball
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residing positions and analyzing corresponding stability. The
benchmark case of a pair of balancing balls is considered. Nu-
merical simulations are conducted to verify the corresponding the-
oretical results. It is found from analytical and numerical results
that the torsional dynamics of the turntable introduces a secondary
resonance above the original translational one. This torsional reso-
nance creates additional narrow unstable region and turns some
original stable region of the balanced solution between two reso-
nances into the one where multiple stable solutions exist. One of
these stable solutions leads to a balanced system while the other
leads to an unbalanced one. To remedy the problem, the spindle
speed could be operated conservatively above both primary trans-
lational and secondary torsional resonances to stabilize the desired
steady-state solutions for expected reduction in radial and tor-
sional vibrations.

The paper is organized as follows. The dynamical model is first
established in Sec. 2, which is followed by searching for desired
stead-state solutions via a method of multiple scales in Secs. 3 and
4. The corresponding stabilities are analyzed in Sec. 5. Section 6
presents numerical results to validate the analytic findings. Sec-
tion 7 gives conclusions.

2 Mathematical Model
The data-reading electromechanical system of a typical ODD is

schematically shown in Fig. 1, which consists of the components
that can be classified into two categories: rotating and nonrotating
parts. The assembly of rotating parts, named the equivalent rotor,
contains a disk, the ABS circular race enclosing balancing balls, a
magnetic device for holding the ABS race case to the spindle, and
the rotor of the spindle motor. The assembly of nonrotating parts,
named the equivalent stator, contains the supporting plate struc-
ture �the turntable in the ODD industry�, the stator of the spindle
motor, the optical pick-up head, and its electrical driving units.
The motion of the unbalanced rotor is mainly in radial directions
due to the horizontal flexibility of the damping washers that con-
stitute the suspension system for the turntable. To facilitate deri-
vation of the mathematical model, the following assumptions are
made.

1. The rotor shaft is treated as a rigid body, leading to no lateral
flexural vibrations while in rotation.

2. The equivalent rotor is treated as a single rigid body, i.e., the
disk and its magnetic holding device are fixed to each other,
exhibiting no relative motion while in high-speed rotations.

3. After the optical pick-up head unit completes a single seek-
ing process, the stator of the spindle motor, the optical
pick-up head, the turntable, and its drive unit are considered
as a single rigid body; that is, the equivalent stator is treated
as a rigid body.

4. The flexibilities of the washers are assumed to be well cap-
tured by linear springs and dampers, denoted by K’s and C’s,

Fig. 1 Schematic of the optical pickup asse
respectively.
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5. Since the suspensions constituted by washers are much more
flexible than spindle bearings, bearing dynamics is ne-
glected.

6. The races in various radii containing the rolling balls of the
ABS shape as perfect circles. The balls are assumed perfect
spheres, moving along their respective races. Due to the cen-
trifugal field generated by the rotor rotation, the rolling balls
always keep contact with the outer flange of their race. Fur-
thermore, no slip occurs between the rolling balls and the
race flanges.

7. Due to the possible assembling error caused by magnetic
attachment of the race onto the spindle rotor, the center of
the circular races deviates from the rotating center of the
rotor by a small distance, �.

With the above assumptions made, the stator-rotor-balls system
mainly undergoes planar motion under the centrifugal force in-
duced by the inherent imbalance of the rotating disk. The planar
motion consists of persistent high-speed rotations of the rotor and
reciprocating torsions of the stator, including the turntable. Figure
2 shows the schematic physical configuration of the system, where
the ith ball with mass mi and radius ri is illustrated. The race
radius for the ith ball is Ri. To perform the ensuing analysis, the
following notations and coordinates are defined. Gr and Gs denote
the mass centers of the equivalent rotor and stator, respectively,
while Mr and Ms denote the corresponding masses. OBi is the
center of the ith ball. OR denotes the origin of the ground coordi-
nate frame ORXRYR, while Os, coinciding with Gs, is designated
as the origin of a rotating frame OsXsYs which is fixed to the stator
�or turntable�. Note that when the rotor is at rest; i.e., no radial/
torsional vibration caused by the inherent imbalance of the
equivalent rotor, OR coincides with Os. Also when the rotor is at
rest before rotation, �, defined in frame ORXRYR, denotes the
fixed, initial angle between ORXR and OsXs. As the rotor is rotat-
ing, the torsional angle of the turntable or the stator can be cap-
tured by the one between ORXR and OSXS, which is denoted by
��+��t�� with ��t� defined as the time-varying part of the tor-
sional angle of the turntable. Furthermore, Om is designated as the
rotational center of the equivalent rotor, also serving as the origin
of the rotating frame OmXmYm, which is fixed to the rotor. The
rotating angle of the disk is in fact the rotating angle of OmXm
relative to the OsXs, which is captured by ��t�. Considering the
rotating angle of the stator �or turntable�, the angle of the disc �or
OmXmYm� to the ground frame ORXRYR is then �+��t�+��t�. Fi-
nally, Or is the center of the ball race, also designated as the origin
of frame OrXrYr, which is rotated with the same angle as OmXmYm
relative to ground. The deviation of Or from Om is due to the
prescribed race eccentricity �. Note in Fig. 2 that OROs and OmOr
are greatly exaggerated for a clear visualization.

Other dynamic variables and parameters are next defined. e

ly including rotating and nonrotating parts
mb
captures the mass eccentricity of the equivalent rotor relative to
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Or �not including the inertial effect from balancing balls of the
ABS�, i.e., e=OrGr. �, defined in frame OrXrYr, denotes the lead
angle of the rotor’s mass center location with respect to the cur-
rent angular position of the rotor, �+��t�+��t�. �i�t�, defined in
frame OrXrYr, denotes the lead angle of the ith ball position with
respect to the current angular position of rotor. S, defined in frame
OrXrYr, denotes the distance between the mass center of the stator
and the rotation center of rotor, i.e., S=OsOm. lj denotes the dis-
tance between the stator center and the jth washer. � j, defined in
frame OsXsYs, denotes the azimuth angles toward the jth washer
from the stator center.

All dynamic degrees of freedom can be identified based on the
aforementioned system description and definitions to characterize
system dynamics. The displacements of OR from Os along axes
ORXR and ORYR, respectively, as shown in Fig. 2, can be captured
by (X�t� ,Y�t�), which prescribes the degrees of freedom of the
rotor/turntable in two horizontal directions. Thus, the magnitude
of the residual radial vibration of the rotor and turntable can be
captured by A�t�=OROs=�X�t�2+Y�t�2. On the other hand, the
rotational angle of the stator, ��t�, provides another degree of
freedom describing torsional motions or vibrations of the stator or
turntable. Finally, the remaining degrees of freedom are the angu-
lar positions of the balancing balls, which as stated are prescribed
by the lead angles �i�t�’s. With notations and coordinates defined,
in the following subsections the kinetic, potential, and generalized
forces are formulated for application of Larganege’s equations to
derive equations of motion.

2.1 Formulation of Kinetic Energy. The formulation of ki-
netic energy is started with expression of system motions in terms
of the notations defined, yielding

R� =
Xs

=
X

,

Fig. 2 Math
s �
Ys
� �

Y
�
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R� r = �Xr

Yr
� = �X

Y
� + S�cos�� + �� − cos �

sin�� + �� − sin �
� + ��cos�� + �� − 1

sin�� + �� �
+ e�cos�� + � + �� − cos �

sin�� + � + �� − sin �
� ,

�1�

R� bi = �Xbi

Ybi
� = �X

Y
� + S�cos�� + �� − cos �

sin�� + �� − sin �
�

+ ��cos�� + �� − 1

sin�� + �� � + Ri�cos�� + � + �i� − 1

sin�� + � + �i�
� ,

R� kj = �Xkj

Ykj
� = �X

Y
� + lj�cos�� j + �� − cos � j

sin�� j + �� − sin � j
� ,

where R̄s, R̄r, and R̄bi denote the displacement vectors of the

equivalent stator, rotor, and the ith ball, respectively, while R̄kj’s
denote those of four supporting points of the turntable by washers.
The kinetic energy for the system consists of three parts, stators,
rotors, and balls. Each part includes translational and rotational
kinetics. Based on Eqs. �1�, the kinetic energies of the equivalent
stator and rotor can be derived as

Tss = 1
2 Ms · �R�̇ s�2,

Tsr = 1
2 Is · �̇2,

�2�

Trs = 1
2 Mr · �R�̇ r�2,

Trr = 1
2 Ir · �̇2,

where Is and Ir are the moments of inertia of the stator and rotor,
respectively. Note also in Eqs. �2� that the first subscripts of s and

atical model
em
r under T denote stator and rotor, respectively, while the second
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subscripts of s and r denotes the types of the kinetic energy T in
translational and rotational, respectively. The energies of the bal-
ancing ball are formulated next with assumptions of no slip be-
tween the balls and races and the perpendicularity of the ball’s
spinning axis to the ABS circular bottom plane. These assump-
tions enable one to express the angular velocity of ball self-
spinning: 	̇Bi, in terms of center velocity of the ball, Vbti, and
circumferential velocity of the race wall, Vwti, by 	̇Bi= �Vwti

−Vbt1� /ri. With this expression, the rotational energy of the ball
becomes

Tbri =
1

2
Ibi	̇Bi

2 =
1

2
Ibi	Vwti − Vbti

ri

2

=
1

2

Ibi

ri
2 �Vwti − Vbti�2, �3a�

where Ibi is the moment of inertia of the ith ball. The translational
energy is

Tbsi = 1
2mi · R�̇ bi

2 . �3b�

Considering n balls in the ABS, then the total kinetic energy of the
system is

T = Tss + Tsr + Trs + Trr + �
i=1

n

�Tbsi + Tbri� . �4�

2.2 Formulation of Potential Energy. The total potential en-
ergy of the system is induced by the deflections of damping wash-
ers in the X and Y directions. Considering N isotropic damping
washers, the total potential can be derived by

V = �
j=1

N
1

2
Kj�Xkj

2 + Ykj
2 � �5�

=
1

2�
j=1

N

Kj�X + lj�cos�� j + �� − cos � j�2

+
1

2�
j=1

N

Kj�Y + lj�sin�� j + �� − sin � j�2,

�6�

where Kj is the stiffness of the jth washers in both X and Y
directions.

2.3 Formulation of Generalized Forces. The generalized
forces of the system can be categorized into two kinds, acting on
the stator and acting on the balls. Those on the stator are the
damping forces exerted by the washers. Due to the dynamic pro-
portionality of these damping forces to the stator’s moving speed,
the generalized forces due to damping washers can simply be
captured by

fx = − �
j=1

N

Cj�Ẋ − lj�̇ sin�� j + ��� , �7a�

fy = − �
j=1

N

Cj�Ẏ + lj�̇ cos�� j + ��� , �7b�

f� = − �
j=1

N

�Cj�Ẋlj sin�� j + �� − Ẏlj cos�� j + �� − lj
2�̇� , �7c�

where fx, fy, and f� denote the generalized damping forces acting
on the X, Y, and � directions, respectively.

For those acting on the balls rolling inside the race, as shown in
Fig. 3, each ball bears a viscous drag D and a rolling resistant
moment Mf due to the contact with race wall. The generalized

force acting on the ball can be described by

Journal of Applied Mechanics
f�i = − Di −
Mfi

ri
sgn��̇i� �8a�

where the second term results from the rolling resistant moment,
while the first term, the viscous drag due to the lubricant between
ball and race, Di, can be assumed in the form of

Di = 	iRi�̇i �8b�

which is the product of the adhesive coefficient 	1 and the relative
velocity of the ith ball to the race flange.

Based on the basics of contact theory, the rolling resistant mo-
ment Mfi in the second term of Eq. �8a� can be derived by first
constructing the free-body diagram of the rolling ball as shown in
Fig. 3�a�. With the assumption that the ball material is much
stiffer than the race, it results in a small bump deformation in the
frontal area of the rolling ball. However, one needs to note that the
geometry change due to this bump in the circular shape of the race
is negligible from the macroscopic point of view, thus resulting in
almost no strain energy change of the race, as compared to the
total system potential. The bump deformation in fact shifts the
contact point between the ball and race flange from a downright
position to the one with a corresponding angle 
, deviating from
the downright direction. In order to capture the generalized forces
that are described in the frames previously defined, the acting
points of the forces in the original free-body diagram are trans-
lated to the downright position as shown in Fig. 3�b� with an
additional moment generated as

Mfi = Nri sin 
 + Fri�1 − cos 
� , �9a�
which in fact deters the ball rolling forward, thus named the “roll-
ing resistance moment.” Incorporating the friction effect by sur-
face roughness, the resistance is modified as

Mfi = Nri sin 
 + Fri�1 − cos 
� + �Nri �9b�

where 
, in practice, can be assumed very small, thus, Mfi
�riN�
+��. Note also in Eq. �9b� that N is the reaction force
which is, by Newton’s third law, equivalent to the inertial force
generated by the ball in the centrifugal field, i.e., N=mian, where
an represents the inertial acceleration of the ball induced by the
centrifugal field. an can be formulated in terms of system vari-
ables and parameters by

an = − Ẍ cos�� + � + �i� − Ÿ sin�� + � + �i� − S��̈ sin�� + �i − ��

− �̇2 cos�� + �i − ��� − ����̈ + �̈�sin �i − ��̇ + �̇�2 cos �i�

˙ ˙ ˙ 2

Fig. 3 Actions of forces and acceleration on the balancing
balls. „a… Free-body diagram; „b… equivalent free body diagram;
and „c… accelerations.
+ Ri�� + � + �i� . �10�
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For simplicity, the definition 	0�
+� is introduced. With the
derivation of Mfi in Eq. �9b�, the assumption of the smallness of

, and the expression of an given in Eq. �10�, the rolling resistance
moment Mfi on the ith ball can finally be approximated by

Mfi = ri	0mi�− Ẍ cos�� + �̇ + �i� − Ÿ sin�� + � + �i�

− S��̈ sin�� + �i − �� − �̇2 cos�� + �i − ���

− ����̈ + �̈�sin �i − ��̇ + �̇�2 cos �i� + Ri��̇ + �̇ + �̇i�2 .

�11�

2.4 Application of Lagrange’s Equations. With potentials,
i=1
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kinetic energies, and generalized forces derived, the equations of
motion for the system can be derived by applying Lagrange’s
equations

d

dt	 �L

�q̇̃k


 −
�L

�q̃k

= Fqk
, �12�

where L=T−V, T is the total kinetic energy, V is the total poten-
tials, Fqk’s are generalized forces, and q̃k’s are the generalized
coordinates incorporating all dynamic variables of the system; i.e.,
q̃= �X Y � �1¯�n�. Application of Lagrange’s equation �12�
gives differential equations governing the translational and tor-
sional motions of the rotor-stator assembly in X, Y, and �, respec-
tively, and the motions of balancing balls in �i’s, which are ex-
pressed by
MẌ + �
j=1

N

CjẊ + �
j=1

N

KjX = 	Mr + �
i=1

n

mi
S��̈ sin�� + �� + �̇2 cos�� + ��� + 	Mr + �
i=1

n

mi
����̈ + �̈�sin�� + �� + ��̇ + �̇�2 cos�� + ���

+ Mre���̈ + �̈�sin�� + � + �� + ��̇ + �̇�2 cos�� + � + ��� + �
i=1

n

miRi���̈ + �̈i + �̈�sin�� + �i + ��

+ ��̇ + �̇i + �̇�2 cos�� + �i + ��� − �
j=−1

N

Kjlj�cos�� j + �� − cos � j� + �
i=1

N

Cjlj�̇ sin�� j + �� , �13a�

MŸ + �
j=1

N

CjẎ + �
j=1

N

KjY = 	Mr + �
i=1

n

mi
S�− �̈ cos�� + �� + �̇2 sin�� + ��� + 	Mr + �
i=1

n

mi
��− ��̈ + �̈�cos�� + �� + ��̇ + �̇�2 sin�� + ���

+ Mre�− ��̈ + �̈�cos�� + � + �� + ��̇ + �̇�2 sin�� + � + ��� + �
i=1

n

miRi�− ��̈ + �̈i + �̈�cos�� + �i + ��

+ ��̇ + �̇i + �̇�2 sin�� + �i + ��� − �
j=−1

N

Kjlj�sin�� j + �� − sin � j� − �
j=1

N

Cjlj�̇ cos�� j + �� , �13b�

	Mr�S2 + �2 + e2 + 2�S cos�� − �� + 2Se cos�� − � − �� + 2�e cos �� + Is + �
i=1

n

Ibi + �
i=1

n

mi�S2 + �2 + Ri
2 + 2�S cos�� − �� + 2SRi cos��

− � − �i� + 2�Ri cos �i�
�̈ + �
j=1

N

Cjlj�− Ẋ sin�� j + �� + Ẏ cos�� j + �� + lj�̇� + �
j=1

N

Kjlj�− X sin�� j + �� + Y cos�� j + �� + lj sin ��

= − 	Mr��2 + e2 + �S cos�� − �� + Se cos�� − � − �� + 2�e cos �� + �
i=1

n

Ibi + �
i=1

n

mi��2 + Ri
2 + �S cos�� − �� + SRi cos�� − � − �i�

+ 2�Ri cos �i�
�̈ − �
i=1

n

mi�Ri
2 + SRi cos�� − � − �i� + �Ri cos �i��̈i + �

i=1

n

Ibi
Ri

ri
�̈i − 	Mr + �

i=1

n

mi
�S�̇���̇ + 2�̇�sin�� − ���

− MrSe�̇��̇ + 2�̇�sin�� − � − �� − �
i=1

n

miRi�S��̇ + �̇i + 2�̇���̇ + �̇i�sin�� − � − �i� − ��2�̇ + �̇i + 2�̇��̇i sin �i�

+ 	Mr + �
i=1

n

mi
��S sin�� + �� + � sin�� + ���Ẍ − �S cos�� + �� + � cos�� + ���Ÿ + Mre�Ẍ sin�� + � + �� − Ÿ cos�� + � + ���

+ �
n

miRi�Ẍ sin�� + �i + �� − Ÿ cos�� + �i + ��� , �13c�
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	mi +
Ibi

ri
2 
Ri�̈i = 	 Ibi

ri
− miRi
��̈ + �̈� − Di −

Mfi

ri
sgn��̇i� + mi�Ẍ sin�� + �i + �� − Ÿ cos�� + �i + ��� + mi�S�− �̈ cos�� + �i − ��

− �̇2 sin�� + �i − ��� + ��− ��̈ + �̈�cos �i − ��̇ + �̇�2 sin �i� . �13d�
3 Asymptotic Analysis
To understand the dynamic characteristics of the system and

further evaluate performance of the ABS in vibration reduction,
approximate steady-state solutions are next sought by first making
some scaling assumptions to manipulate equations of motion and
then employing the asymptotic analysis techniques, the method of
multiple time scales. To this end, stiffnesses and dampings of four
washers are first assumed identical for simplicity, that is, Ki=K
and Ci=C for all i, which is followed by assuming all balls are
inside a single race with Ri=R for all i. Furthermore, the installing
positions of the four washers are assumed symmetrical to the mass
center of the stator, i.e., l1= l2= l3= l4= l and �1=�−�2=�3−�
=2�−�4=�. Finally, the practice that the mass of the balancing
ball m is much smaller than that of the net system M facilitates a
small parameter to be defined by

 = �m/M . �14�

With the scaling parameter defined in the above, the following are
made based on practice to rearrange the system equations into an
amenable form for multiple time scale analysis:

� = �nt, �i = Ib/mRr, x = X/R ,
�n = �4K/M, � = l/R, y = Y/R ,

− �� cos�� + �� +  �1 cos�� + ���y + M �2�x sin�� + � +

Journal of Applied Mechanics
�0 = m/�m + Ib/r2�, � = S/R, q = � ,
�15�

M̄ = Mr/M, 2�1 = �/R, � = C/M�n,

Ī =
Is + 2Ib

MR2 , 2�2 = e/R, �1 = 	1/m�n,

�0 = 	0,

where �1 and �2 are nondimensionalized race and rotor mass ec-
centricities, respectively. In practice, radial vibrations of spindle,
disk, and turntable are normally within the range of 1–10 �m,
while the torsional angle � is within the range of
10−4 to 10−3 degrees. Therefore, as nondimensionalized by the
race radius R, normally around 1 cm, X /R and Y /R can be scaled
as small numbers, while � can be scaled as a small quantity. On
the other hand, two eccentricities of � and e are assumed to be in
levels of 2, which indicates that, compared to scaled responses in
x, y, and q defined in the above, the system is under weak exci-
tations. Substituting the definition of  in Eq. �14� and definitions/
scalings in Eqs. �15� into system of equations �13� with the as-
sumption that the rotor undergoes a constant speed, i.e., d� /d�
= p��= p��, the following nondimensionalized equations of motion

in terms of scaled system variables can be obtained:
ẍ + �ẋ + x = M̄���q̈ sin�� + �� + 2q̇2 cos�� + ��� + �1�q̈ sin�� + �� + �p + q̇�2 cos�� + ��� + �2�q̈ sin�� + � + ��

+ �p + q̇�2 cos�� + � + ��� + �
i=1

n

���q̈ sin�� + �� + 2q̇2 cos�� + ��� + 2�1�q̈ sin�� + �� + �p + q̇�2 cos�� + ���

+ ��q̈ + �̈i�sin�� + � + �i� + �p + q̇ + �̇i�2 cos�� + � + �i�� , �16a�

ÿ + �ẏ + y = M̄���− q̈ cos�� + �� + 2q̇2 sin�� + ��� + �1�− q̈ cos�� + �� + �p + q̇�2 sin�� + ��� + �2�− q̈ cos�� + � + ��

+ �p + q̇�2 sin�� + � + ��� + �
i=1

n

���− q̈ cos�� + �� + 2q̇2 sin�� + ��� + 2�1�− q̈ cos�� + �� + �p + q̇�2 sin�� + ���

+ �− �q̈ + �̈i�cos�� + � + �i� + �p + q̇ + �̇i�2 sin�� + � + �i�� , �16b�

	M̄����2 + �2�1�2 + �2�2�2 + 22�1� cos�� − �� + 2�2�2 cos�� − � − �� + 22�12�2 cos �� + Ī + 2�
i=1

n

����2 + �2�1�2

+ 1 + 22�1� cos�� − �� + 2� cos�� − � − �i� + 22�1 cos �i�
q̈ + ��2q̇ + �2q

= − �
i=1

n

�1 + � cos�� − � − �i� + 2�1 cos �i − �1��̈i − �M̄ + n2�2�1�p�p + 2q̇�sin�� − �� − M̄�2�2p�p + 2q̇�sin�� − � − ��

− 2�
i=1

n

���p + 2q̇ + �̇i��p + �̇i�sin�� − � − �i� − �1�2p + 2q̇ + �̇i��̇i sin �i� + �M̄ + n2���� sin�� + �� + 2�1 sin�� + ���ẍ

2 ¨ ¯ 2 ¨ ¨
�� − y cos�� + � + ���
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+ 2�
i=1

n

�ẍ sin�� + � + �i� − ÿ cos�� + � + �i�� , �16c�

�̈i = − �0�1 − �1�q̈ − �0�1�̇i + �0�ẍ sin�� + � + �i� − ÿ cos�� + � + �i�� + �0���− q̈ cos�� + �i − �� − 2q̇2 sin�� + �i − ���

+ 2�1�− q̈ cos �i − ��̇ + q̇�2 sin �i� − �0�0�− ẍ cos�� + � + �i� − ÿ sin�� + � + �i�

− ��q̈ sin�� + �i − �� − 2q̇2 cos�� + �i − ��� − 2�1�q̈ sin �i − ��̇ + q̇�2 cos �i� + ��̇ + �̇i + q̇�2sgn��i� , �16d�
where single and double overdots denote single and double differ-
entiations with respect to new time scale �, respectively. Equa-
tions �16� are ready for application of the multiple-scale method to
find approximate steady-state solutions and analyze their stabili-
ties. Assume

x��,� = x0�T0,T1� + x1�T0,T1� + O�2� , �17a�

y��,� = y0�T0,T1� + y1�T0,T1� + O�2� , �17b�

q��,� = q0�T0,T1� + q1�T0,T1� + O�2� , �17c�

�i��,� = �i0�T0,T1� + �i1�T0,T1� + O�2� , �17d�

where T0=� is the fast time scale and T1=� is the slow time
scale. The introduction of T0 and T1 renders

d

d�
= D0 + D1 + O�2� and

d2

d�2 = D0
2 + 2D0D1 + O�2� ,

�18�

where Dn=� /�Tn for n=0,1. Substituting Eqs. �17� and �18� into
Eq. �16� and ignoring O�2� terms give

0�D0
2x0 + x0� + 1	D0

2x1 + x1 − M̄��D0
2q0 sin � + �1p2 cos �

+ �2p2 cos�� + ��� + �D0x0 + 2D0D1x0

− �
i=1

n

�D0
2�i0 sin�� + �i� + �p + D0�i0�2 cos�� + �i��
 = 0,

�19a�

0�D0
2y0 + y0� + 1	D0

2y1 + y1 − M̄�− �D0
2q0 cos � + �1p2 sin �

+ �2p2 sin�� + ��� + �D0y0 + 2D0D1y0

− �
i=1

n

�− D0
2�i0 cos�� + �i� + �p + D0�i0�2 sin�� + �i��
 = 0,

�19b�

0�ĪD0
2q0 + �2q0� + 1�ĪD0

2q1 + �2q1 + �1 − �1� � D0
2�i0

− M̄��sin �D0
2x0 − cos �D0

2y0� + ��2D0q0 + 2ĪD0D1q0� = 0,

�19c�

0�D0
2�i0� + 1�D0

2�i1 + 2D0D1�i0 + �0�1 − �1�D0
2q0 + �0�1D0�i0

+ �0�0�p + D0�i0�2 sgn�D0�i0� + �0�0�p + D0�i0�2

− �0�D0
2x0 sin�� + �i� − D0

2y0 cos�� + �i�� = 0. �19d�
0
Forcing the O� � terms in Eq. �19� equal to zeros renders
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� 1 0 − M̄� sin �

0 1 M̄� cos �

− M̄� sin � M̄� cos � M̄�2 + Ī
�� ẍ0

ÿ0

q̈0
� + �1 0 0

0 1 0

0 0 �2 ��
x0

y0

q0
�

= 0, �20a�

D0
2�i0 = 0. �20b�

Using the framework of fundamental modal transformation, the
nontrivial solutions of Eq. �20� can be captured as the sum of
subsolutions in three modal spaces, yielding

�x0

y0

q0
� = A0�T1��U1�ei�1T0 + B0�T1��U2�ei�2T0 + C0�T1��U3�ei�3T0

+ c.c . , �21a�

�i0 = �i0�T1�T0 + �i0�T1� , �21b�

where �i’s are three modal frequencies �resonance frequencies�,
Ui’s are the corresponding eigenvectors spanning a modal sub-
space, c.c. represents the complex conjugates of preceding terms,
and finally �A0 B0 C0 �i0 �i0� are to be determined in later analy-
sis. �i’s and Ui can first be easily derived from Eqs. �20� based on
simple vibration analysis, yielding

�1 = 1, U1 = �cos �

sin �

0
�;

�2 =
�M̄�2 + Ī + �2� − ��M̄�2 + Ī − �2�2 + 4�2M̄2�2

2�M̄�2 + Ī − M̄2�2�
,

U2 = �−
�2

1 − �2
M̄� sin �

�2

1 − �2
M̄� cos �

1
�; �22�

�3 =
�M̄�2 + Ī + �2� + ��M̄�2 + Ī − �2�2 + 4�2M̄2�2

2�M̄�2 + Ī − M̄2�2�
,

U3 = �
�3

1 − �3
M̄� sin �

−
�3

1 − �3
M̄� cos �

− 1
� .

It can be shown with S approaching zero, i.e., the spindle installed
at the position close to the geometric center of the turntable, that

the space spanned by U1 and U2 is the one that corresponds to the
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translational motion of the stator/rotor in the x and y directions
and the space by U3 corresponds to torsional motion in �. Fur-
thermore, with the washers assumed isotropic in dampings/
stiffnesses and installed symmetric to the mass center of the stator,
one can show that �1 and �2 calculated by Eqs. �22� are close but
not equal to each other due to the coupling effect between trans-
lational and torsional motions.

In Eqs. �21�, A0, B0, C0, �i0, and �i0 are unknown parameters
varied in slow time scale T1, which are, in a standard procedure of
multiple-scale analysis, to be determined in the next stage of
analysis, i.e., in the O�1� analysis. This is started with expressing

�A0 ,B0 ,C0 by

Journal of Applied Mechanics
A0 = A1ei�T1, B0 = B1ei�T1, and C0 = C1ei�T1, �23�

and then performing the asymptotic analysis with the assumption
that the rotation of the system-equivalent rotor is operated near
one of the resonances, �i, given in Eqs. �22�, that is,

p = �i + � for i = 1,2,3. �24�

Incorporating the expressions �23� and the assumption �24� into
Eqs. �19�, the equations governing the O�1� dynamics can be

obtained as below,
D0
2x1 + x1 − M̄� sin �D0

2q1 = − i�1ei�1T0��A1 + 2	 �A1

�T1
+ i�A1
�cos � + i�2ei�2T0��B1 +

2

�2
	 �B1

�T1
+ i�B1
� �2

1 − �2
M̄� sin �

+ i�3ei�3T0��C1 +
2

�3
	 �C1

�T1
+ i�C1
� �3

1 − �3
M̄� sin � + i�ie

i�iT0	 1

2i�i
M̄p2�1 +

1

2i�i
M̄p2�2ei�

+
1

2i�i
�
i=1

n

��p + �i0�2ei�i0�
 + c.c. + N.S.T., �25a�

D0
2y1 + y1 + M̄� cos �D0

2q1 = − i�1ei�1T0��A1 + 2	 �A1

�T1
+ i�A1
�sin � − i�2ei�2T0��B1 +

2

�2
	 �B1

�T1
+ i�B1
� �2

1 − �2
M̄� cos �

− i�3ei�3T0��C1 +
2

�3
	 �C1

�T1
+ i�C1
� �3

1 − �3
M̄� cos � − i�ie

i�iT0	 1

2�i
M̄p2�1 +

1

2�i
M̄p2�2ei�

+
1

2�i
�
i=1

n

��p + �i0�2ei�i0�
 + c.c. + N.S.T., �25b�

�M̄�2 + Ī�D0
2q1 + �2q1 − M̄� sin �D0

2x1 + M̄� cos �D0
2y1

= − i�2ei�2T0��B1 +
2

�2
	 �B1

�T1
+ i�B1
��2 − i�3ei�3T0��C1 +

2

�3
	 �C1

�T1
+ i�C1
��2

+ i�ie
i�iT0	−

1

2�i
M̄p2��1e−i� −

1

2�i
M̄p2��2ei��−�� −

1

2�i
��

i=1

n

��p + �i0�2ei��i−���
 + c.c. + N.S.T., �25c�

D0
2�i1 = − 2

��i0

�T1
− �0�1�i0 − �0�0�p + �i0�2 sgn��i0� −

i

2
�0�1

2�− A1ei���i+�1�T0+�i0−�� + A1e−i���i−�1�T0+�i0−�� − Ā1ei���i−�1�T0+�i0−��

+ Ā1e−i���i+�1�T0+�i0−��� +
1

2
�0�2

2�B1ei���i+�2�T0+�i0−�� + B1e−i���i−�2�T0+�i0−�� + B̄1ei���i−�2�T0+�i0−�� + B̄1e−i���i+�2�T0+�i0−���

�	 �2

1 − �2
M̄ + 1
� +

1

2
�0�3

2�C1ei���i+�3�T0+�i0−�� + C1e−i���i−�3�T0+�i0−�� + C̄1ei���i−�3�T0+�i0−�� + C̄1e−i���i+�3�T0+�i0−���

�	 �3

1 − �3
M̄ + 1
� + �0�1 − �1��B1�2

2ei�2T0 + B̄1�2
2e−i�2T0 + C1�3

2ei�3T0 + C̄1�3
2e−i�3T0� , �25d�

where N.S.T.’s denote the nonsecular terms that do not affect the ensuing steady-state solutions and stability analysis. It is noted at this
point that the couplings in the linear parts of Eqs. �25a�–�25c� hinder the advances of the multiple-scale analysis. To solve this problem,
the modal coordinates utilized in the level of O�0�, as shown in Eqs. �22�, are again applied herein to decouple the linear parts of Eqs.
�25a�–�25c� into


̈1 + �1
2
1 = − i�1��A1 + 2	 �A1

�T1
+ i�A1
�ei�1T0 − i�i�iFe−i��ei�iT0 + c.c. + N.S.T., �26a�

c2�
̈2 + �2
2
2� = − i�2��B1 +

2

�2
	 �B1

�T1
+ i�B1
� · �	 �2

1 − �2
M̄�
2

+ �2�ei�2T0 − i�iF�e−i�	 �2

1 − �2
M̄ + 1
ei�iT0 + c.c. + N.S.T.,
�26b�
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c3�
̈3 + �3
2
3� = − i�3��C1 +

2

�3
	 �C1

�T1
+ i�C1
�

· �	 �3

1 − �3
M̄�
2

+ �2�ei�3T0 − i�iF�e−i�	 �3

1 − �3
M̄ + 1
ei�iT0 + c.c. + N.S.T., �26c�

where

c2 =
�4�2M2�2 + �Ī − �2 + M̄�2�2 + �Ī − �2 + M�2 − 2M2�2��4�2M2�2 + �Ī − �2 + M̄�2�2�

2M̄2�2
,

c3 =
�4�2M2�2 + �Ī − �2 + M̄�2�2 − �Ī − �2 + M�2 − 2M2�2��4�2M2�2 + �Ī − �2 + M̄�2�2�

2M̄2�2
,

F =
1

2�i
M̄p2��1 + �2ei�� +

1

2�i
�
i=1

n

��p + �i0�2ei�i0� ,

and �
1 
2 
3� are the modal coordinates in the level of O�1�.
Expressing A1, B1, and C1 in Eqs. �26� in complex forms, that is,

A1 = a�T1� + ib�T1�, B1 = c�T1� + id�T1�, and C1 = e�T1�

+ if�T1� , �27�

and incorporating them into rhs’s of Eqs. �26� and �25d� for re-
moval of secular terms, the slow dynamic equations evolved in
time scale T1 can be obtained. Note herein that with different
resonance �i applied in the assumption �24� there would result a
different set of slow dynamic equations, which are only valid in
the neighborhood of the respective �i. With �1 considered, the set
of slow dynamic equations in the following can be derived, which
are only valid when the rotor speed is operated near the first
translational resonance �1:

�a

��
=



2�− �a + 2�b −
1

2�1
	M̄p2��1 sin � + �2 sin�� − ���

+ �
i=1

n

��p + �i0�2 sin�� − �i0��
� ,

�b

��
=



2�− 2�a − �b −
1

2�1
	M̄p2��1 cos � + �2 cos�� − ���

+ �
i=1

n

��p + �i0�2 cos�� − �i0��
� ,

�c

��
=



2
�− �2�c + 2�d� ,

�d

��
=



2
�− 2�c − �2�d� ,

�28a�
�e

��
=



2
�− �3�e + 2�f� ,

�f

��
=



2
�− 2�e − �3�f� ,

��i0

��
= −

�0

2
�− �1

2�a sin�� − �i0� + b cos�� − �i0�� + �1�i0

2
+ �0�p + �i0� sgn��i0� ,
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��i0

��
= �i0.

With �2 considered, the set of slow dynamic equations in the
following can be derived, which are only valid when the rotor
speed is operated near the second, translational resonance �2:

�a

��
=



2
�− �a + 2�b� ,

�b

��
=



2
�− 2�a − �b� ,

�e

��
=



2
�− �3�e + 2�f� ,

�f

��
=



2
�− 2�e − �3�f� ,

�28b�
�c

��
=



2�− �2�c + 2�d −
�2

2�2
	M̄p2��1 cos � + �2 cos�� − ���

+ �
i=1

n

��p + �i0�2 cos�� − �i0��
 ��1 + �M̄ − 1��2�

2�2 − �M̄�2 + Ī + �2��2

� ,

�d

��
=



2�− 2�c − �2�d +
�2

2�2
	M̄p2��1 sin � + �2 sin�� − ���

+ �
i=1

n

��p + �i0�2 sin�� − �i0��
 ��1 + �M̄ − 1��2�

2�2 − �M̄�2 + Ī + �2��2

� ,

��i0

��
= −

�0

2
�− �2

2�c cos�� − �i0� − d sin�� − �i0��

�	 �2

1 − �2
M̄ + 1
� + �1�i0 + �0�p + �i0�2 sgn��i0�� ,

��i0

��
= �i0.

With �3 considered, the set of slow dynamic equations in the
following can be derived, which are only valid when the rotor
speed is operated near the third, torsional resonance �3.

�a
=


�− �a + 2�b� ,
�� 2
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�b

��
=



2
�− 2�a − �b� ,

�c

��
=



2
�− �2�c + 2�d� ,

�d

��
=



2
�− 2�c − �3�d� ,

�28c�
�e

��
=



2�− �3�e + 2�f −
�3

2�3
	M̄p2��1 cos � + �2 cos�� − ���

+ �
i=1

n

��p + �i0�2 cos�� − �i0��
 ��1 + �M̄ − 1��3�

2�2 − �M̄�2 + Ī + �2��3

� ,

�f

��
=



2�− 2�e − �3�f +
�3

2�3
	M̄p2��1 sin � + �2 sin�� − ���

+ �
i=1

n

��p + �i0�2 sin�� − �i0��
 ��1 + �M̄ − 1��3�

2�2 − �M̄�2 + Ī + �2��3

� ,

��i0

��
= −

�0

2
�− �3

2�e cos�� − �i0� − f sin�� − �i0��

�	 �3

1 − �3
M̄ + 1
� + �1�i0 + �0�p + �i0�2 sgn��i0�� ,

��i0

��
= �i0.

Note in Eqs. �28� that �i0 and �i0 provide the dynamics of the
balancing balls. With the slow dynamic equations �28� in hand,
the steady-state solutions and corresponding stabilities of the
original system in Eqs. �13� are sought next in Secs. 4 and 5,
respectively, especially for the ABS equipped with a pair of bal-
ancing balls, which is a most-common and simple design that is
able to counteract the inherent imbalance in a varied range �1�.

4 Approximate Steady-State Responses
The steady-state solutions of the system slow dynamic equa-

tions �28� are sought in this section for the case of a pair of
balancing balls considered. The solutions would be used to predict
balancing ball positions and residual vibrations for evaluating the
performance of the balancer system. The solving process is started
by setting the rhs’s of Eqs. �28� equal to zeros, and also incorpo-
rating the steady-state status that �s10=�s20=0, i.e., both balls are
motionless at steady state. Four different mathematical types of
solutions are found. Type I has the pair of balancing balls settled
at the angular positions separated with a certain angle. Types II
and III, inequivalent in mathematical sense, however, both have
the balancing balls settled at identical angular positions at steady
state. Type IV has the balls settled at the positions 180 degrees
opposite to each other. The mathematical expressions of the
steady-state solutions are given in the following.

Type I: Solutions with distinct ball angular positions. There
exist trivial steady-state solutions from setting the rhs’s of Eqs.
�28� to be zeros; i.e., as=bs=cs=ds=es= fs=0, which leads to zero
level of residual vibration, i.e., A=�X2+Y2=0 up to O��. The
corresponding steady-state ball positions can be easily found by
numerically solving

�
2

cos �si0 = − M̄�1 − M̄�2 cos � , �29a�

i=1
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�
i=1

2

sin �si0 = − M̄�2 sin � . �29b�

Based on the forms of Eqs. �29�, the type I solutions have the pair
of balancing balls settled at distinct positions with the resulted net
counter-balance located at the position 180 degrees opposite to the
inherent imbalance. For this type of solution, since as=bs=cs
=ds=es= fs=0 the system exhibits almost no residual vibrations,
that is, zero residual vibration up to first linear order of ; this
solution is the desired solution for ABS designers to minimize
residual vibrations.

Type II: Solutions with identical ball angular positions. There
exist two other different types of solutions in mathematical ex-
pressions, both of which have the pair of balls settled at identical
positions. The first type of solution can be easily found by numeri-
cally solving the following sets of equations for three different
cases with the rotor speed operated near three resonances, respec-
tively.

Type II-1: For the case that the rotor speed is operated near �1,
i.e., �i=�1, the set of equations used to numerically solve for
steady-state solutions is

cs = ds = es = fs = 0,

�− �as + 2�bs� −
1

2�1
p2	M̄�1 sin � + M̄�2 sin�� − ��

+ 2
bs

�as
2 + bs

2
 = 0,

�− 2�as − �bs� −
1

2�1
p2	M̄�1 cos � + M̄�2 cos�� − ��

− 2
as

�as
2 + bs

2
 = 0,

sin � =
bs

�as
2 + bs

2
, and cos � =

as

�as
2 + bs

2
.

With numerically solved � from the above equations, both steady-
state ball positions can be determined by

�s10 = �s20 = � + � − � .

Type II-2: For the case that the rotor speed is operated near �2,
i.e., �i=�2, the set of equations used to numerically solve for
steady-state solutions is

cs = ds = es = fs = 0,

	− �cs +
2

�2
�ds
 −

���2/�1 − �2��M̄ + 1�

„���2/�1 − �2��M̄�2 + �2
…

·
p2

2�2
	M̄�1 cos � + M̄�2 cos�� − �� − 2

ds

�cs
2 + ds

2
 = 0,

	−
2

�2
�cs − �ds
 −

���2/�1 − �2��M̄ + 1�

„���2/�1 − �2��M̄�2 + �2
…

·
p2

2�2
	− M̄�1 sin � − M̄�2 sin�� − �� + 2

cs

�cs
2 + ds

2
 = 0,

sin � =
bs

�as
2 + bs

2
, and cos � =

as

�as
2 + bs

2
.

With numerically solved � from the above equations, both steady-

state ball positions can be determined by
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�s10 = �s20 = � + � − � .

Type II-3: For the case that the rotor speed is operated near �3,
i.e., �i=�3, the set of equations used to numerically solve for
steady-state solutions is

cs = ds = es = fs = 0,

	− �es +
2

�3
�fs
 −

���3/�1 − �3��M̄ + 1�

„���3/�1 − �3��M̄�2 + �2
…

·
p2

2�3
	M̄�1 cos � + M̄�2 cos�� − �� − 2

fs

�es
2 + fs

2
 = 0,

	−
2

�3
�es − �fs
 −

���3/�1 − �3��M̄ + 1�

„���3/�1 − �3��M̄�2 + �2
…

·
p2

2�3
	− M̄�1 sin � − M̄�2 sin�� − �� + 2

es

�es
2 + fs

2
 = 0,

sin � =
bs

�as
2 + bs

2
, and cos � =

as

�as
2 + bs

2
.

With numerically solved � from the above equations, both steady-
state ball positions can be determined by

�s10 = �s20 = � + � − � .

Type III: Solutions also with identical ball angular positions.
The second type of solution that has both balls settled at identical
positions can be easily found by numerically solving the follow-
ing sets of equations for three different cases with the rotor speed
operated near three resonances, respectively.

Type III-1: For the case that the rotor speed is operated near �1,
i.e., �i=�1, the set of equations used to numerically solve for
steady-state solutions is

cs = ds = es = fs = 0,

�− �as + 2�bs� −
1

2�1
p2	M̄�1 sin � + M̄�2 sin�� − ��

− 2
bs

�as
2 + bs

2
 = 0,

�− 2�as − �bs� −
1

2�1
p2	M̄�1 cos � + M̄�2 cos�� − ��

+ 2
as

�as
2 + bs

2
 = 0,

sin � =
bs

�as
2 + bs

2
, and cos � =

as

�as
2 + bs

2
.

With numerically solved � from the above equations, both steady-
state ball positions can be determined by

�s10 = �s20 = � + � .

Type III-2: For the case that the rotor speed is operated near �2,
i.e., �i=�2, the set of equations used to numerically solve for
steady-state solutions is

cs = ds = es = fs = 0,

	− �cs +
2

�2
�ds
 −

���2/�1 − �2��M̄ + 1�

„���2/�1 − �2��M̄�2 + �2
…

·
p2 	M̄�1 cos � + M̄�2 cos�� − �� + 2

ds

2 2
 = 0,

2�2 �cs + ds
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	−
2

�2
�cs − �ds
 −

���2/�1 − �2��M̄ + 1�

„���2/�1 − �2��M̄�2 + �2
…

·
p2

2�2
	− M̄�1 sin � − M̄�2 sin�� − �� − 2

cs

�cs
2 + ds

2
 = 0,

sin � =
bs

�as
2 + bs

2
, and cos � =

as

�as
2 + bs

2
.

With numerically solved � from the above equations, both steady-
state ball positions can be determined by

�s10 = �s20 = � − � .

Type III-3: For the case that the rotor speed is operated near �3,
i.e., �i=�3, the set of equations used to numerically solve for
steady-state solutions is

cs = ds = es = fs = 0,

	− �es +
2

�3
�fs
 −

���3/�1 − �3��M̄ + 1�

„���3/�1 − �3��M̄�2 + �2
…

·
p2

2�3
	M̄�1 cos � + M̄�2 cos�� − �� + 2

fs

�es
2 + fs

2
 = 0,

	−
2

�3
�es − �fs
 −

���3/�1 − �3��M̄ + 1�

„���3/�1 − �3��M̄�2 + �2
…

·
p2

2�3
	− M̄�1 sin � − M̄�2 sin�� − �� − 2

es

�es
2 + fs

2
 = 0,

sin � =
bs

�as
2 + bs

2
, and cos � =

as

�as
2 + bs

2
.

With numerically solved � from the above equations, both steady-
state ball positions can be determined by

�s10 = �s20 = � − � .

Note in fact that the steady-state dynamics pertaining to solutions
of types II and III are identical to that with a single ball balancer
system, which achieves favorable balancing effect only if the total
mass of balancing ball is sized perfectly. This is usually highly
difficult to achieve due to manufacture tolerance.

Type IV: Solutions with balls separated by 180 degrees. The
solutions of this type can easily be found by solving following
sets of equations near three resonances.

Type IV-1: For the case that the rotor speed is operated near �1,
i.e., �i=�1, the set of equations used to numerically solve for
steady-state solutions are

cs = ds = es = fs = 0,

�− �as + 2�bs� −
1

2�1
p2�M̄�1 sin � + M̄�2 sin�� − ��� = 0,

�− 2�as − �bs� −
1

2�1
p2�M̄�1 cos � + M̄�2 cos�� − ��� = 0,

sin � =
bs

�as
2 + bs

2
, and cos � =

as

�as
2 + bs

2
.

With numerically solved � from the above equations, both steady-
state ball positions can be determined by
�s10 = � − � and �s20 = � − � + � .
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Fig. 4 System stability diagram of ball mass m versus rotor speed �; shaded areas are stable regions while blanks are unstable
ones. „a…–„c… Stability diagrams of type I solution near three resonances �1, �2, and �3, respectively. „d…–„f… Stability diagrams of
type II solution near three resonances, respectively. „g…–„i… Stability diagrams of type III solution near three resonances, respec-

tively. „j…–„l… Stability diagrams of type IV solution near three resonances, respectively.
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Fig. 4 „Continued….
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Type IV-2: For the case that the rotor speed is operated near �2,
i.e., �i=�2, the set of equations used to numerically solve for
steady-state solutions are

cs = ds = es = fs = 0,

	− �cs +
2

�2
�ds
 ���2/�1 − �2��M̄ + 1�

„���2/�1 − �2��M̄�2 + �2
…

·
p2

2�2
�M̄�1 cos � + M̄�2 cos�� − ��� = 0,

	−
2

�2
�cs − �ds
 −

���2/�1 − �2��M̄ + 1�

„���2/�1 − �2��M̄�2 + �2
…

·
p2

2�2
�− M̄�1 sin � − M̄�2 sin�� − ��� = 0,

sin � =
bs

�as
2 + bs

2
, and cos � =

as

�as
2 + bs

2
.

With numerically solved � from the above equations, both steady-
state ball positions can be determined by

�s10 = � − � and �s20 = � − � + � .

Type IV-3: For the case that the rotor speed is operated near �3,
i.e., �i=�3, the set of equations used to numerically solve for
steady-state solutions is

cs = ds = es = fs = 0,

	− �es +
2

�3
�fs
 −

���3/�1 − �3��M̄ + 1�

„���3/�1 − �3��M̄�2 + �2
…

·
p2

2�3
�M̄�1 cos � + M̄�2 cos�� − ��� = 0,

	−
2

�3
�es − �fs
 −

���3/�1 − �3��M̄ + 1�

„���3/�1 − �3��M̄�2 + �2
…

·
p2

2�3
�− M̄�1 sin � − M̄�2 sin�� − ��� = 0,

sin � =
bs

�as
2 + bs

2
, and cos � =

as

�as
2 + bs

2
.

With numerically solved � from the above equations, both steady-
state ball positions can be determined by

�s10 = � − � and �s20 = � − � + � .

Note that type IV renders no counter-balance due to an exact
mutual cancellation of two counter-balancing centrifugal forces
generated by two 180-degree-separated balls at steady state.

5 Stability Analysis and Design Guidelines
Analysis is performed herein to determine the stability of each

steady-state solution found in the previous section. Design guide-
lines are then distilled in the next section for achieving desired
performance by balanced solutions; i.e., substantial radial vibra-
tion reduction. The analysis is conducted via construction of sta-
bility diagrams with respect to variation of two main design pa-
rameters, operating speed � and ball mass m. Other system
parameters are fixed to representative and practical values as fol-
lows: Ms=90.5 g, Mr=49.5 g, Is=1.45�10−4 kg·m2, r=1.5 mm,
R=16.5 mm, K=2650 N/m, �=0.01, C=0.193 Kg/s, e=0.1 mm,
	1=5�10−3 N·s /m2, 	0=10−5, S=30 mm, �=10°, l=67.5 mm,

and �=33.7°. Without loss of representativeness in stability, �
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=0 is employed herein for stability analysis. The tool for stability
analysis is the commonly known Routh-Hurwitz criterion, which
is able to establish an characteristic equation based on the Jacobi-
ans of the scaled slow-dynamic equations �28a�–�28c�. Subse-
quent stability results for all solutions are discussed accordingly in
the followings.

Figures 4�a�–4�l� show various stability diagrams near three
resonances �1, �2, and �3, respectively, where the shaded regions
represent the ones full of stable solutions while the unshadeds are
the ones filled with unstable solutions. Owing to the perturbation
theorem, the stability results shown in each diagram are only guar-
anteed valid near the resonances considered. Among all solutions,
type I solutions, based on the conclusion drawn in Sec. 3, are
desired balanced ones which render the most substantial radial
and torsional vibration reductions compared to other types of so-
lutions. To completely ensure stability of this type I solution at
steady state, the ABS can be conservatively designed and operated
by designers such that �� ,m� simultaneously fall in three shaded
areas in Figs. 4�a�–4�c�, which results in a region that coincides
with the shaded area in Fig. 4�c� �since it is entirely contained in
those in Figs. 4�a� and 4�b��. The aforementioned requirements
lead to two design guidelines. First, the system needs to be oper-
ated above three resonances, i.e., ���1 ��1=2622 rpm for the
simulated case herein�, ���2 ��2=2579 rpm�, and ���3 ��3
=5115 rpm�. Second, the maximal counter-balance must be
greater than inherent unbalance, i.e., 2mR�Mre, which corre-
sponds to the area m�0.15 g in Fig. 4�c�. Acknowledging �3
=5115 rpm being well below the commonly operated rotor speeds
for modern ODDs �usually above 8000 rpm�, a suitable design of
m such that 2mR�Mre suffices to offer the ABS a fair chance to
achieve substantial vibration reduction for modern ODDs.

Figures 4�d�–4�i� also show stability regions of type II and III
solutions as well obtained in Sec. 3. These solutions have two
balls settled at the same position such that only a slim chance of
perfect-sizing makes possible effective vibration reductions,
which, for ABS designers, are the solutions much less desirable as
compared to type I solutions for balancing balls to settle. To avoid
the dynamic convergence of the balancing balls to these solutions,
based on Figs. 4�d�–4�i�, one needs to assign ball mass and also
operate rotor speed such that ���1, ���2, ���3, and 2mR
�Mre. This is equivalent to force �� ,m� fallen in the stability
region of type I solutions shown in Fig. 4�c�. As to the type IV
solutions, which have the two balancing balls settled at positions
180 degrees opposite to each other such that they generate no
effect of vibration reduction, the analytical result shows that with
the same ranges of � and m considered in the previous cases, no
Fig. 5 Combined stability diagram
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stability region is affirmed. This denies any convergence chance
of the ball dynamics to type IV solutions in practice.

Fig. 6 Dynamic responses corresp
Based on the stability diagrams given in Figs. 4, the total sys-

840 / Vol. 72, NOVEMBER 2005
tem stability can be integrally represented in Fig. 5, where stable
I region refers to the region where only type I solution is stable,

ding to the marked points in Fig. 5
on
stable II region refers to where type II and III solutions are stable,
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while stable I&II region refers to where type I and II solutions are
both stable. Note that the stability results in stable II and stable
I&II indicate coexistence of multiple stable solutions for the non-
linear system considered in this study. The unstable regions near
translational and torsional resonances correspond to the cases
where no previously solved solutions are stable—the balancing
balls may not be able to stop or stick together at steady state,
which is demonstrated in simulations in the next section. Finally,
it can be seen from this figure that stable I region, being exactly
the desired stable region of type I solution shown in Fig. 4�c�,
shares no overlap with any other shades corresponding to other
stable solutions. This indicates that with �� ,m� assigned in stable
I region, the balancing balls are guaranteed to converge to the type
I solutions, leading to the desired, substantial reduction in radial
and torsional vibrations. On the other hand, with �� ,m� assigned
in stable I&II region, the designer of the ABS stands a risk that the
balancing balls might converge to type II solution, one of unbal-
anced solutions. Conclusively speaking from the above, with ap-
propriate designation of total balancer mass one could operate the
ODD spindle above the transnational/torsional resonances conser-
vatively to converge system dynamics to the region with only one
stable type I solution, the balanced one, such that substantial vi-
bration reduction is achieved.

6 Simulation Validation
With stability results obtained and design guidelines distilled,

numerical simulations are conducted in this section for validation.
The numerical simulation method used is the conventional Runge-
Kutta method. Figures 6 show the resulted dynamic responses
corresponding to the five marked points with determined rotor
speeds and ABS mass in Fig. 5. Each response is observed in
terms of ball positions, (�1�t� ,�2�t�), level of radial vibration,

� 2 2

Fig. 6 „Continued….
A�t�= X�t� +Y�t� , and level of torsional vibration, ��t�, in three
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respective subfigures. Note in Figs. 6�a��1�, 6�b��1�, 6�c��1�,
6�d��1�, and 6�e��1� that the dashed lines denote the desired
steady-state settling ball positions of type I solutions, which ren-
der almost zero radial and torsional vibrations. Figures
6�a��1�–6�a��3� depict the responses corresponding to point a in
Fig. 5, in which it is seen that the system dynamics converges to
one of type II �or III� solution with both balls settled at identical
positions and then resulting in large, unreduced radial and tor-
sional vibrations. Figures 6�b��1�–6�b��3� depict the responses
corresponding to point b in Fig. 5, in which it is seen that with
�� ,m� in one of the unstable regions in Fig. 5, the response is
oscillatory at steady state since no stable fixed-point-type solution
exists, as found in previous stability analysis on the asymptotic
solutions. Figures 6�c��1�–6�c��3� depict the responses corre-
sponding to point c in Fig. 5, in which the system converges to
one of type I solutions with the balls settled at distinct positions.
Note in fact that with values of �� ,m� in the stable I&II region of
Fig. 5, it is found from simulations herein that the dynamics might
converge to either type I solution as shown in Fig. 6�c� or type II
solution which is not shown herein. Figures 6�d��1�–6�d��3� de-
pict the responses corresponding to point d in Fig. 5, which ex-
hibit the same dynamic characteristics as those shown in Figs.
6�b��1�–6�b��3�. Figures 6�e��1�–6�e��3� depict the responses
corresponding to point e in Fig. 5, in which the system dynamics
converges to one of desired type I solutions with the balls settled
at the distinct positions as predicted by previous multiple scale
analysis in the dashed lines. These solutions are the desired solu-
tions for the balls to converge to, resulting in a substantial vibra-
tion reduction in both radial and torsional directions.

7 Conclusion
A complete dynamics and stability analysis on the automatic

balancer system �ABS� installed in optical disk drives with con-
sideration of torsional motion due to the turntable are accom-
plished in this study. A mathematical model was first established
to precisely describe the dynamics of the whole system, which is
followed by reasonable scalings and application of multiple scales
analysis. Through the perturbed equations derived from the
method of multiple scales, all possible steady-state solutions are
found and the associated stabilities are analyzed. The results show
coexistence of multiple stable balanced/unbalanced solutions be-
tween translational and torsional resonances with one single bal-
anced solution above the torsional resonance. Therefore, it is rec-
ommended that along with appropriate designation of total
balancer mass, the spindle speed of an ODD could be operated
above the torsional resonances conservatively for the system dy-
namics to converge to the only one stable solution, the balanced
one, such that substantial vibration reduction is achieved.
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New Strain Energy Function
for Acoustoelastic Analysis
of Dilatational Waves
in Nearly Incompressible,
Hyper-Elastic Materials
Acoustoelastic analysis has usually been applied to compressible engineering materials.
Many materials (e.g., rubber and biologic materials) are “nearly” incompressible and
often assumed incompressible in their constitutive equations. These material models do
not admit dilatational waves for acoustoelastic analysis. Other constitutive models (for
these materials) admit compressibility but still do not model dilatational waves with
fidelity (shown herein). In this article a new strain energy function is formulated to model
dilatational wave propagation in nearly incompressible, isotropic materials. This strain
energy function requires four material constants and is a function of Cauchy–Green
deformation tensor invariants. This function and existing (compressible) strain energy
functions are compared based upon their ability to predict dilatational wave propagation
in uniaxially prestressed rubber. Results demonstrate deficiencies in existing functions
and the usefulness of our new function for acoustoelastic applications. Our results also
indicate that acoustoelastic analysis has great potential for the accurate prediction of
active or residual stresses in nearly incompressible materials. �DOI: 10.1115/1.2041661�
Introduction
When waves propagate through a prestressed medium, the

speed of propagation is stress dependent. This phenomenon,
called acoustoelasticity, is the basis for a nondestructive method to
determine active or residual stresses in materials and structures.
Hughes and Kelly �1� initiated the modern theory of acoustoelas-
ticity, relating prestress in compressible elastic media to velocity
changes in bulk waves. Toupin and Bernstein �2�, Truesdell �3�,
and Tokuoka and Iwashimizu �4� developed the theory further.
Stress was determined from the measurement of bulk waves by
Blinka and Sachse �5�; Kino et al. �6�; King and Furtunko �7�;
Thompson, Lee, and Smith �8�; and Dike and Johnson �9�. Iwash-
imizu and Kobori �10� and Mase and Johnson �11� formulated
theory and numerically analyzed surface waves in prestressed
conventional elastic media �e.g., steel and aluminum�. Lee, Kim
and Achenbach �12� performed surface wave experiments to cor-
roborate their acoustoelastic predictions of prestress in conven-
tional materials. Pao, Sache, and Fukuoka �13� reviewed and sum-
marized many applications for acoustoelastic theory. Although
intensively studied, most acoustoelastic analyses have been ap-
plied to conventional compressible engineering materials, e.g.,
steel or aluminum.

Acoustoelastic analyses have also been performed on rubber by
Ogden �14�, Erigen and Suhubi, �15�, and Fu �16�, but dilatational
waves are not considered because they assumed rubber to be in-
compressible. If an elastic material is modeled as purely incom-
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pressible, then the theoretical propagation velocity of dilatational
waves becomes infinite. That is, an incompressible material can-
not hold a dilatational wave, and acoustoelastic analysis is limited
to the two shear waves. Rubber is, however, slightly compressible
with a Poisson’s ratio around 0.499, �17�, and it can sustain dila-
tational waves, �18�. Treating rubber and other hyper-elastic ma-
terials as nearly incompressible materials is inconsistent for any
analysis of dilatational wave propagation.

To our knowledge, no previous acoustoelastic formulations ex-
ist for hyper-elastic materials in which the material is treated as
“nearly” incompressible. The goals of this article then are first to
formulate an appropriate, strain energy function for a nearly in-
compressible, hyper-elastic material and then to demonstrate its
potential for acoustoelastic analyses by comparing it with existing
strain energy functions. In this study, we propose a new strain
energy function by modifying the well-known Moony–Rivlin
function to admit compressibility. We add terms related to volu-
metric change. These terms model dilatational waves with fidelity
without disturbing other mechanical characteristics, e.g., stress-
strain behavior and shear wave propagation.

Acoustoelastic Theory for a Compressible, Hyper-
Elastic Material

The theory of acoustoelasticity superposes small dynamic de-
formations of an ultrasonic wave onto a static, finite deformation.
For convenience, three configurations are introduced.

�1� The stress-free or reference configuration is defined with
vector XA to denote a material point in the body.

�2� The initial, finite, static deformation is defined as the de-
formed configuration with position vector xi.

�3� The small dynamic wave deformation is defined as the cur-
rent configuration with position vector xi

*.

All Latin indices range from 1 to 3 and a repeated summation

convention is assumed unless stated otherwise.
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As defined in previous acoustoelastic studies, e.g., Refs. �2,13�,
the equation of motion referred to the deformed configuration is

�

�xj
�C̄ijksuk,s + tjs

�ui

�xs
� = �üi. �1�

In the above equation, C̄ijks and tjs, respectively, represent the
fourth order stiffness tensor and Cauchy stress tensor caused by a
finite static deformation. For a general compressible, hyper-elastic

material, C̄ijks and tjs are related to the strain energy function
W�EAB�, deformation gradient tensor FjA and finite Green strain
tensor EAB by

C̄ijks =
1

det FjA
FiAFjBFkCFsD

� 2W

�EAB�ECD
�2�

and

tjs =
1

det FjA
FjAFsB

�W�EAB�
�EAB

, �3�

where FjA=�xj /�XA and EAB= 1
2 �FiAFiB−�AB�.

When prestress is zero, tensor C̄ijks becomes stiffness tensor
cijks for generalized Hooke’s law, and Eq. �1� reduces to the wave
equation. Due to symmetry of the strain and stress tensors, the

tensor C̄ijks is symmetric as the Hookean stiffness tensor cijks, ie.,

C̄ijks = C̄ksij = C̄ijsk = C̄jiks. �4�
Finally, Cauchy stress in the current configuration can be written
as

tij
* = C̄ijksuk,s + �1 − ui,i�tij + ui,ktkj + uj,stis. �5�

Due to symmetry, tensor C̄ijks is replaced hereafter with a 6 by 6

matrix C̃pq for convenience with the contracting subscript nota-

tions 1→11, 2→22, 3→33, 4→23, 5→13, 6→12 to relate C̄ijks

to C̃pq �i , j ,k , l=1,2 ,3 and p ,q=1,2 , . . . ,6�. Toupin and Bern-
stein �2� or Pao, Sache, and Fukuoka �13� provide a detailed deri-
vation of the above equations.

Strain Energy Function for a Nearly Incompressible
Material

In this section we propose a new strain energy function for an
isotropic, nearly incompressible material �rubber or biological ma-
terials� under finite deformation. Acoustoelastic behavior of this
function is then compared with other compressible, strain energy
functions from previous studies.

Due to its very small compressibility, a rubber-like material is
often assumed to be incompressible within its strain energy func-
tion. Such functions can be categorized into the following two
major groups.

�1� Invariants-based functions
Most constitutive equations in this group are derived as a

function of the first two invariants of the Cauchy–Green
deformation tensor CAB. The most widely used invariants-
based strain energy function, proposed by Rivlin �19�, is

W = C1�IC − 3� + C2�IIC − 3� .

IIIC = 1, �6�

where IC, IIC, and IIIC represent first, second, and third
invariants of Cauchy–Green tensor CAB, respectively. In
turn, Cauchy–Green tensor CAB is related to the deforma-
tion gradient tensor FjA by

CAB = FiAFiB, �7�
where FjA=�xi /�XA.
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�2� Principal stretch based functions
Equations in this group are derived as functions of prin-

cipal stretches. The most widely used function in this
group, proposed by Ogden �20�, is

W = �
p=1

N
�p

�p
��1

aP + �2
aP + �3

aP − 3� . �8�

�1�2�3 = 1,

where �i �i=1,2 ,3� are eigenvalues of the Cauchy–Green
tensor CAB.

The above incompressible functions are generally useful but do
not model dilatational waves. Since rubber-like materials can sus-
tain the propagation of dilatational waves, a strain energy function
with compressibility is necessary to model this phenomenon.

Numerous strain energy functions for nearly incompressible
materials have been formulated for nonlinear finite element analy-
ses where material incompressibility causes computational prob-
lems �Cescotto and Fonder �21�, Liu, Hofsteller, and Mang �22�,
Watanabe �23�, Doll and Schweizerhof �24��. Recently, strain en-
ergy functions based on the principal stretches have gained popu-
larity, especially to characterize a very high level of strain. Be-
cause these require an extra computational step to evaluate the
principal stretches, invariants-based functions are still attractive.
They are easier to implement into finite element formulations and
save computational time. Doll and Schweizerhof �24� determined
the mathematical requirements for the parts of strain energy func-
tions that govern volumetric change. They separated isochoric
�non-volume changing� and volumetric �volume-changing� parts
of many published strain energy functions and then showed which
of them satisfied the mathematical requirements. Any new func-
tion that admits compressibility must also satisfy these require-
ments.

Strain energy functions can either be formulated as a function
of Cauchy–Green invariants or principal stretches. In acoustoelas-
ticity, three different waves are potentially able to propagate in
each direction. Except for the special case when the direction of
wave propagation coincides with the direction of principal stress,
the equations are coupled and difficult to evaluate. This study then
is limited to invariants-based strain energy functions, which are
easier to use in acoustoelastic analysis.

The following five invariants-based strain energy functions are
considered �Eqs. �9�–�13��. The first function �Eq. �9��, proposed
by Smith and Rivlin �25�, has been utilized both by Tokuoka �26�
and Johnson �27� in studies of acoustoelasticity in anisotropic ma-
terial. Since only isotropic material is considered herein, only the
isotropic terms are retained �Eq. �9��. The second function �Eq.
�10�� was proposed by Watanabe et al. �23� to study the kinking of
hyper-elastic materials like rubber. The third and fourth functions
�Eqs. �11� and �12�, respectively� were proposed by Doll �24� in
his study on the volumetric behavior of strain energy functions. In
addition to these four functions, we propose a new function �Eq.
�13��, based on the Moony–Rivlin function �Eq. �6��, but devel-
oped with additional terms that are a function of the third invari-
ant of the Cauchy–Green tensor. These five strain energy func-
tions listed in order are

W1 = b1IE
2 + b2IIE + g1IE

3 + g2IEIIE + g3IIIE, �9�

where IE=EAA, IIE= 1
2 �EABEBA−EAAEBB� and IIIE=det EAB.

W2 = C1�IC − 3� + C2�IIC − 3� − �2C1 + 4C2�Ln�IIIC�

+ K̂��J − 1�2 + Ln�J�2� , �10�

where �as defined by Watanabe et al. �22�� K̂=3�C1+C2��1

−�� / �1+���1−2��− �4C1+8C2� and � is Poisson’s ratio.
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W3 =
K

2
�Exp�J − 1� − Log J − 1� + C1��1 − 3� + C2��2 − 3�

�11�

W4 =
K

2
�J − 1�Log J + C1��1 − 3� + C2��2 − 3� , �12�

where �1= IC / IIIC
1/3, �2= IIC / IIIC

2/3, and J=�IIIC.

W5 = C1�IC − 3� + C2�IIC − 3� + �C1 + C3��IIIC − 1�

+ 2�− 2C1 − 2C2 − C3���IIIC − 1� + C4��IIIC − 1�3.

�13�

In functions �10� through �13�, IC, IIC, and IIIC represent the first,
second, and third invariants of the Cauchy–Green tensor CAB, re-
spectively. When �IIIC=1, i.e., when the material is incompress-
ible, Eq. �13� becomes a Moony–Rivlin formulation. The addi-
tional terms represent a power series in �IIIC, the significance of
which is described in subsequent sections.

Formation of the Acoustoelastic Problem
The dilatational wave problem addressed in this study �Fig. 1�

is a hyper-elastic, nearly incompressible material stretched in the
x1 direction while wave propagation is measured and computed in
the x2 direction. Because the material has slight compressibility, it
potentially can sustain three different waves in the y direction, i.e.,
a longitudinal wave and two shear waves with displacements in
the x2−x1 direction and x2−x3 direction, respectively.

In this section, velocities of the three potential waves are de-
rived. The acoustoelastic Eq. �1� for this problem is given in x1
direction as

�C̃11 + t11�
�2u1

�x1
2 + C̃66

�2u1

�x2
2 + C̃55

�2u1

�x3
2

+ �C̃12 + C̃66�
�2u2

�x1�x2
+ �C̃13 + C̃55�

�2u3

�x1�x3
= �

d2u1

dt2 ,

�14a�

in x2-direction as

�C̃12 + C̃66�
�2u1

�x1�x2
+ �C̃66 + t11�

�2u2

�x1
2 + C̃22

�2u2

�x2
2 + C̃44

�2u2

�x3
2

+ �C̃23 + C̃44�
�2u3

�x2�x3
= �

d2u2

dt2 , �14b�

Fig. 1 Three potential waves propagate in x2 direction in pre-
stretched media
and in x3-direction as
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�C̃13 + C̃55�
�2u1

�x1�x3
+ �C̃23 + C̃44�

�2u2

�x2�x3
+ �C̃55 + t11�

�2u3

�x1
2

+ C̃44
�2u3

�x2
2 + C̃33

�2u3

�x3
2 = �

d2u3

dt2 , �14c�

where u1, u2, u3 are wave displacements in the x1, x2, x3 direc-

tions. In the above equations, C̃pq and t11, respectively, represent
the pq entry of the matrix and Cauchy stress in x1 direction as
evaluated by Eqs. �2� and �3�. Since wave propagation is only in
the y direction, displacements in three directions can be assumed
to be

	u1

u2

u3

 = 	D1

D2

D3

Exp�i��2 · x2 − 	t�� . �15�

By substituting these assumed displacements into Eqs. �14a�
through �14c�, the following eigenvalue equations are derived:

− C̃66�2
2 + �	2 0 0

0 − C̃22�2
2 + �	2 0

0 0 − C̃44�2
2 + �	2

�	D1

D2

D3

 = 0.

�16�

We introduce a relationship between wave velocity c, wave num-
ber �2, and frequency 	 into the above equations, that is

c =
	

�2
. �17�

Wave velocities in three distinct directions are then given as dila-
tational waves with displacement in x2 direction

cD =�C̃22

�
, �18a�

shear wave with displacement in x2−x3 direction

cS1 =�C̃44

�
�18b�

and shear wave with displacement in x2−x1 direction

cS2 =�C̃66

�
. �18c�

Later we describe experiments in which only the dilatational wave

in the y direction was measured. Hence, only C̃22 is evaluated.

Expressions for C̃22, C̃44, C̃66 and t11 are derived for the five
strain energy functions �Eqs. �9�–�13�� in the Appendix. Since

matrix C̃pq must reduce to a Hookean matrix cpq when prestress is

zero, C̃22, C̃44, and C̃66 must become

�C̃22�e=0 = � + 2� = c22 �19a�

and

�C̃44�e=0 = �C̃66�e=0 = � = c44 = c66 �19b�

when prestrain e is zero. Here � and � are Lame’s constant and
shear modulus, respectively. Using these expressions, we can de-
termine relationships between each material constants and � and
� for each function under consideration.

For function �9�:

�C̃22�e=0 = 2b1 = � + 2� �20a�
and
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�C̃44�e=0 = �C̃66�e=0 = b2/2 = � . �20b�

Hence the Lame’s constant is given as �=2b1−b2.
For function �10�

�C̃22�e=0 = 8C1 + 16C2 + 4K̂ = � + 2� �21a�

and

�C̃44�e=0 = �C̃66�e=0 = 4C1 + 6C2 = � . �21b�

Hence the Lame’s constant is given as �=4C2+4K̂.
For functions �11� and �12�

�C̃22�e=0 =
8�C1 + C2�

3
+ K = � + 2� �22a�

and

�C̃44�e=0 = �C̃66�e=0 = 2�C1 + C2� = � . �22b�

Hence the Lame’s constant is given as �=− 4
3 �C1+C2�+K.

For function �13�

�C̃22�e=0 = 4C1 + 4C2 + 2C3 = � + 2� �23a�

and

�C̃44�e=0 = �C̃66�e=0 = 2�C1 + C2� = � . �23b�

Hence the Lame’s constant is given as �=2C3.
From the above relationships, the following observation can be

made.

�1� For functions �11�–�13�, the shear modulus is given by �
=2�C1+C2�. The same result can be derived from Moony–
Rivlin function �6�. Since all three functions can be consid-
ered as derivations of function �6�, this result is expected.

�2� However, the shear modulus for function �10� is �=4C1
+6C2 and slightly different from the shear modulus evalu-
ated from function �6�.

�3� The Lame’s constants from functions �11� and �12� are the
same and comply with the definition of bulk modulus K
=�+ 2

3 ·2�C1+C2�=�+ 2
3�.

�4� For our new function �13�, the third constant C3 is directly
related to Lame’s constant by C3=� /2. The fourth constant

C4 only shows up in C̃22 with prestrain and disappears
when prestrain is removed. This implies that fourth con-
stant C4 governs the higher order volumetric term.

To evaluate width change after a longitudinal stretch in a nearly
incompressible material, b is introduced as the magnitude of first
order, transverse shrinkage. Magnitude of shrinkage b is assumed
to be a small perturbation of the width change in an incompress-
ible material. When an incompressible material is stretched �Fig.
2�, the width change can be evaluated from Eq. �24�. However, for
a nearly incompressible material, the width change is slightly

Fig. 2 Before and after the deformation of a unit block
smaller and can be estimated from Eq. �25�
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wi =
1

�1 + e
, �24�

wn =
1

�1 + �1 − b�e
�

1
�1 + e

1

�1 −
be

1 + e

. �25�

The magnitude of lateral shrinkage b �evaluated in the Appendix�
for a stress-free condition of function �10� approaches infinity, and
therefore strain energy function �10� is eliminated as a candidate
for acoustoelastic analysis hereafter.

Doll �24� shows that the volumetric part of the strain energy
function has to satisfy the following two conditions

U�J� 
 0, �26�

� �2U

�J2 �
J=1

= K = � +
2

3
� . �27�

Here K, �, and � represent bulk modulus, Lame’s constant, and
shear modulus for infinitesimal theory. Both functions �11� and
�12� satisfy these conditions. The newly proposed function �13�
also must satisfy these conditions. If the isochoric portion of the
strain energy function is assumed to be

W�IC,IIC,J� − U�J� = C1��1 − 3� + C2��2 − 3� , �28�
then the volumetric part of function �13� for infinitesimal case
�J�1� is

U�J� = C1�− 4J + J2 + 3J2/3� + C2�1 − 4J + 3J4/3� + 6C3�− 1 + J�2.

�29�
In deriving the above equation, infinitesimal strain is assumed and
the following relationships are introduced:

IC � 3J2/3 = 3IIIC
1/3 �30�

IIC � 3J4/3 = 3IIIC
2/3. �31�

By differentiating the volumetric part U�J� by J twice,

�2U

�J2 = 2C3 + C1 · �2 −
2J2/3

3J2 � + C2 ·
4J4/3

3J2 . �32�

For the zero-strain condition �J=1�, the following required rela-
tionship is obtained:

� �2U

�J2 �
J=1

= 2C3 +
4

3
C1 +

4

3
C2 = K . �33�

Equation �33� confirms that our new strain energy formulation
�Eq. �13�� satisfies this mathematical requirement for volumetric
behavior, i.e., Eq. �27�.

Experimental Methods
The experiment setting is depicted in Fig. 3. A strip of rubber

�L 12 cm�W 3 cm�T 0.3 cm� was placed in a servo-hydraulic
testing system and stress versus stretch behavior was obtained and
confirmed with repeated testing. Then, the ultrasound transmitter
and receiver transducers were placed in contact with the rubber
after increments of uniaxial stretch. A 2.25 MHz �nominal fre-
quency� nonfocused ultrasonic transducer �0.635 cm diameter�
was utilized. Travel time of the wave was measured directly from
a digital oscilloscope �Tektronix 2232� and rubber thickness was
measured with digital calipers. Dilatational wave velocity was
computed from travel time divided by thickness starting with a
stress-free �non-stretched� condition.

Rubber was stretched from 100% to 110% of its original length
in 2% stretch increments. After 110% of stretch, it was stretched
in 5% increments. At each increment, travel time of the dilata-

tional wave, specimen thickness, and applied force was recorded.
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Stress-Strain Relationship
To explore the utility of each strain energy function still under

consideration for acoustoelastic analysis �i.e., Eqs. �9� and �11�–
�13��, the stress-strain relations were analytically evaluated and
compared with experimental data as follows:

1. Moony–Rivlin material function �6� was fit to four repeti-
tions of stress versus stretch data, and material coefficients
C1 and C2 were evaluated using a least squares technique.
This yields the following mean values:

C1 = 8.60 � 105 Pa, C2 = − 1.55 � 105 Pa.

2. Bulk modulus K for functions �11� and �12� and C4 for func-
tion �13� were evaluated from Eq. �18a� and Eqs. �C3� and
�E3� from the Appendix. Also required were C1 and C2,
obtained in the previous step, and the dilatational wave ve-
locity cL measured in the stress-free condition. From these
we obtain

K = 2.19 � 109 Pa and C3 = 2.18 � 109 Pa.

3. The five coefficients for function �9� were obtained via a
nonlinear, least squares method by using function �6� with
C1 and C2 �from step 1� to yield

b1 = 1.09 � 109 Pa, b2 = 28.2 � 105 Pa

g1 = 2.78 � 109 Pa, g2 = − 4.45 � 109 Pa,

g3 = 1.03 � 1010 Pa.

4. The stress-strain relations for each function �Eqs. �9� and
�11�–�13�� were evaluated and are compared with experi-
mental data �Fig. 4�.

The four strain energy functions under current consideration
�Eqs. �9� and �11�–�13�� model material behavior with almost

Fig. 3 Experiment setting to stretch a rubber specimen and to
measure dilatational wave travel time as a function of stretch
identical fits of the stress-strain data �Eq. �4��. In the evaluation
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with Eq. �11�, C4 was set at 3.0�1011 Pa. Figure 4 shows that the
higher order terms in �IIIC �that we added in Eq. �13�� govern
volume change, but they do not affect the stress-strain behavior of
a Moony–Rivlin function. The purpose of these additional terms is
to model dilatational wave propagation, without affecting other
mechanical behaviors.

By using the above parameters in the volumetric part of the
new strain energy function �Eq. �13��, the constraint in Eq. �26�
can be considered. The volumetric part of Eq. �13� satisfies Eq.
�26� U�J�
0 near J�1.0 �Fig. 5�. Since only the behavior of a
nearly incompressible material is under consideration �e.g., rubber
has compressibility ��0.499�, Eq. �13� is an acceptable strain
energy function.

Figure 6 shows the relationship between strain in the x1 direc-
tion E11 and �2

2 of one of the shear waves as computed from the
Smith and Rivlin �25� function �9�. �2

2, as defined in Eqs. �15� and
�16�, must be positive for shear waves to propagate. Since only
dilatational waves were experimentally measured, shear wave be-
havior is not considered. However, this figure indicates that by

Fig. 4 Stress-strain relations for a simple tension test. Solid
line „-… shows the least squared experimental results. The dot
„.…, circle „�…, cross „�…, and plus „�… effectively superimpose
to show the similar analytical results evaluated from functions
„9… and „11…–„13…, respectively.

Fig. 5 Relationship between the strain energy function „13…
and J= „IIIC…1/2. Solid line: Volumetric part of function „13… as a
function of J. Dashed line: The entire strain energy function

„13… as a function of J.
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increasing the applied strain E11 to 0.01 �i.e., when �2
2=0�, one of

the quasi-shear waves is converted from a bulk wave into a sur-
face wave �an impossible event when the incidence wave is per-
pendicular�. This result casts doubt on the ability of function �9� to
simulate acoustoelastic phenomena. Hence, function �9� will not
be further compared with the remaining strain energy functions.

Analytical and Experimental Results
In this section, dilatational wave velocities evaluated from the

three strain energy functions still under consideration �Eqs.
�11�–�13�� are compared with our experimental results. The ex-
periment depicted in Fig. 3 was previously described.

In Fig. 7, normalized thickness changes of rubber �x2 direction�
were measured during axial stretch �x1 direction�. Also plotted and
compared are the normalized travel time and analytically evalu-
ated normalized travel times from functions �11�–�13�. From the
figure, we observe the following:

Fig. 7 Stress-strain relation of rubber from a simple tension
test. Crosses „�…: Normalized travel time from experiment.
Circles „�…: Normalized thickness from experiment. Dashed
line „- -…: Normalized travel times predicted by functions „11…
and „12…. Solid line: Normalized travel time predicted by func-
tion „13….

Fig. 6 Relation between E11 and �2
2 for shear wave in function

„9…
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�1� A nearly incompressible material like rubber can sustain
dilatational waves.

�2� Since the change of normalized travel time of the dilata-
tional wave is larger than the normalized change of thick-
ness, the velocity change in the dilatational wave must be
an acoustoelastic effect due to prestretch.

�3� To model this acoustoelastic effect, the material description
must contain a higher order compressibility term than is
contained in Eqs. �11� and �12�.

Acoustoelasticity affects shear waves in addition to dilatational
waves. Therefore, it is important to check if the higher order terms
�in �IIIC� in function �13� affect the function’s ability to model
shear waves in the same prestressed media. The major difference
between functions �6� and �13� lies in the terms that describe
volumetric change, hence the behavior of shear waves derived
from function �13� should be very close to the behavior of shear
waves predicted by a Moony–Rivlin function �6�. Erigen and Su-
hubi �15� have studied acoustoelastic effects on shear waves in a
Moony–Rivlin material. They shear wave velocities in a pre-
strained hyper-elastic incompressible isotropic material modeled
by function �6� where the velocities are eigenvalues of the follow-
ing equation:

�� · cS
2 − 2��1

2 · n1
2 + �3

2 · n3
2� · �C1 + C2 · �2

2�

− 2�2
2 · n2

2�C1 + C2 · �2
2�� · �� · cS

2 − 2�1
2 · n1

2�C1 + C2 · �3
2�

− 2��2
2 · n2

2 + �3
2 · n3

2� · �C1 + C2 · �1
2��

− 2 · �1
2 · �3

2 · ��1
2 − �3

2� · ��2
2 − �3

2�n1
2 · n2

2 = 0. �34�

Here cS and � represent shear wave velocity and density of the
media, respectively; �1, �2, and �3 represent principal stretches in
1, 2, and 3 directions; n1, n2, and n3 represent wave normals �n1
=n3=0 and n2=1 for our problem�.

Figure 8 shows that the velocities of the two shear waves using
both functions �6� and �13� are almost identical. These results
indicate that our new function �13�, which appropriately simulates
the acoustoelastic effect of dilatational waves in a nearly incom-
pressible material, does not disturb the acoustoelastic predictions

Fig. 8 Velocity of two shear waves evaluated by functions „6…
and „13…. Solid line: Shear wave 01 by function „6…. Dashed line
„- -…: Shear wave 02 by function „6…. Pluses „�…: Shear wave 01
by function „13…. Crosses „�…: Shear wave 02 by function „13….
of shear waves �with a Moony–Rivlin formulation�.
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Discussion
The goal of this study was to formulate, for the first time, an

acoustoelastic method that could determine prestresses in nearly
incompressible, hyperelastic materials. Well-known strain energy
functions �Eqs. �9�–�12�� and a newly proposed function �Eq.
�13�� were compared. By comparing the analytical and experi-
mental results, we conclude the following:

�1� A dilatational acoustoelastic effect does exist in nearly in-
compressible, hyper-elastic materials �e.g., rubber or bio-
logical materials�.

�2� Although compressibility is quite small in these materials,
it must be included in material formulations to simulate
dilatational waves. Therefore, constitutive terms using the
third invariant IIIC of the Cauchy–Green tensor cannot be
ignored, and higher order terms in �IIIC are necessary to
simulate the acoustoelastic effect in dilatational waves.

�3� The acoustoelastic effect is relatively large in these materi-
als �compared to materials like steel and aluminum� and
can be measured more easily. Hence this phenomenon may
be a useful experimental tool to analyze these nearly in-
compressible, hyper-elastic materials.

�4� Acoustoelastic experiments and analysis can therefore de-
termine prestress �or prestretch� in hyper-elastic, nearly in-
compressible materials. Similarly, experiments and analysis
can identify the mechanical properties of these materials
�i.e., the inverse problem�. However, a constitutive equation
appropriate for the analysis is required.

�5� For acoustoelastic analyses of nearly incompressible mate-
rials, we propose a new strain energy function �Eq. �13��
that is based on a Moony–Rivlin material and satisfies
mathematical and physical conditions. The newly proposed
function contains four material constants, yet the Cauchy
stress and each entry of the matrix C̃pq derived from this
function has a very simple form �Eqs. �E1�–�E3��. There-
The prestresses in all three directions are derived as
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fore, this function is easier to use when solving the inverse
problem �i.e., determining material properties� than many
other functions.

�6� In these materials, the velocity of a dilatational wave is
much larger than velocities of the two shear waves �Figs. 7
and 8�. Behavior of the dilatational wave is properly simu-
lated by our newly proposed function, without disturbing
any other mechanical characteristics, e.g., stress-strain be-
havior and shear wave propagation associated with a
Moony–Rivlin material.

�7� This study suggests that more detailed, three-dimensional
strain energy functions for nearly incompressible materials
can be developed with the help of both acoustoelastic mea-
surements and stress-strain relationships.

Herein we have formulated a new strain energy function and
demonstrated its potential value for acoustoelastic analysis of
nearly incompressible materials. It is based on the well-known
Moony–Rivlin strain energy function �6�, hence it has a relatively
simple, isotropic formulation defined by four parameters. The pur-
pose of the new function �13� is to properly simulate dilatational
waves. It is not intended to handle complicated mechanical behav-
iors that cannot be appropriately represented by a Moony–Rivlin
strain energy function, and it is unnecessarily complex if dilata-
tional waves are not of interest. However, the acoustoelastic
method �using dilatational wave experiments� coupled with the
proposed strain energy function appears to hold great promise.
Many applications can be envisaged for analysis of rubber-like
materials or biological tissues.

Appendix

In this appendix, detailed expressions for C̃22, C̃44, C̃66, t11 and
t22= t33 derived from five different strain energy functions are
given.

(A) From Eq. (9), C̃ , C̃ , and C̃ are derived as follows:
22 44 66
C̃22 =
1

J
�2b1 + �2b1 − g2�e + �9g1 − 3g2�e2 + �3g1 − g2�e3

�1 + e�3 + b
e�4b1 + 6g1 − g2 + �4b1 − 2g2�e + �18g1 − 6g2�e2 + �6g1 − 2g2�e3�

�1 + e�4 �
�A1�
C̃44 =
1

J
�2b2 + �2b2 − 2g3�e − 3�g2 − g3�e2 + �g2 − g3�e3

4�1 + e�3

+ b
2b2 + g2 + �2b2 − g3�e + 3�g2 − g3�e2 + �g2 − g3�e3

2�1 + e�4 �
�A2�

C̃66 =
1

J
�1

4
�2b2 + �2b2 + g3�e + 3g2e2 + g2e3�

+ b · e ·
2b2 + 2g2 − g3 + �2b2 + g3�e + 3g2e2 + g2e3

2�1 + e� �
�A3�

where 1/J=2�2�1+b ·e� / �1+e��e3�2+e� / �1+e�2.
t11 =
e�1 + e��4b2 + �12b1 + 4b2 + 3g2 + g3�e + �16b1 + 12g2�e2�

�2�e3�2 + e�

+
e�1 + e���4b1 + 27g1 + 4g2�e3 + 18g1e4 + 3g1e5�

�2�e3�2 + e�

+
b · e�1 + e��8b1 + �20b1 + 5g2 − 3g3�e + �16b1 + 36g1�e2�

�2�e3�2 + e�

+
b · e�1 + e���4b1 + 27g1 + 4g2�e3 + 18g1e4 + 3g1e5�

�2�e3�2 + e�
�A4�

t22 = t33 =
e�4b2 + �12b1 + 4b2 + 3g2 + g3�e + �16b1 + 12g2�e2�

�1 + e�2�2�e3�2 + e�

+
b · e�8b1 + �20b1 + 5g2 − 3g3�e + �16b1 + 36g1�e2�

�1 + e�2�2�e3�2 + e�

+
b · e��4b1 + 39g1�e3 + 18g1e4 + 3g1e5�

2 3
�A5�
�1 + e� �2�e �2 + e�
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The magnitude of lateral shrinkage b for this function is evaluated
as

b =
nb

db

nb = − �1 + e��4b2 + �− 12b1 + 8b2 − 3g2 + 2g3�e + �16b1 + 8b2

+ 3g2 − 3g3�e2� − �1 + e���− 4b1 + 2b2 − 27g1 + 8g2 + g3�e3

+ �− 18g1 + 12g2�e4 + �− 3g1 + g2�e5�

db = − 8b1 + 4b2 + �− 20b1 + 12b2 + g2�e + �− 28b1 + 16b2 − 36g1

+ 9g2 + 2g3�e2 + �− 20b1 + 10b2 − 39g1 + 10g2 + 3g3�e3

+ �− 4b1 + 2b2 − 45g1 + 14g2 + g3�e4 + �− 21g1 + 7g2�e5

+ �− 3g1 + g2�e6 �A6�

At stress-free condition, the lateral shrinkage is

�b�e=0 =
2b2

− 8b1 + 4b2
�A7�

(B) From function (10), C̃22, C̃44, and C̃66 are derived as fol-

lows:

3�1 + e�
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C̃22 =
1

J
�4�2C1 + 4C2 + K̂� − 2b · e

K̂ + �4C1 + 8C2 + 2K̂�e
�1 + e�2 �

�B1�

C̃44 =
1

J
�4C1 + 2C2

3 + 8e + 4e2

�1 + e�2 − 4b · e
C2 + �1 + e�2K̂

�1 + e�3 �
�B2�

C̃66 =
1

J
�4C1 + 6C2 − 2C2e − 2b · e

C2 + C2e + 2K̂

1 + e
� �B3�

where 1/J=1+e / �1+e+b ·e�.
The prestresses in all three directions are

t11 = 2�− C1 − 2C2 + 2�C1 + C2�e + C1e2�

+ 2b · e
C1 + 4C2 − 2C1e − C1e2 + 2K̂

1 + e
�B4�

t22 = t33 = 2
�− C1 − 2C2 − �3C1 + 5C2�e − �2C1 + C2�e2 + C2e3�

�1 + e�2

+ b · e
4C1 + 4K̂

1 + e
+ b · e

C2�5 + 8e + 4e2�
�1 + e�3 �B5�
The magnitude of lateral shrinkage b for this function is
b =
�1 + e��C1 + 2C2 + 3C1e + 5C2e + 2C1e2 + C2e2 − C2e3�

2C1e + 5C2e + 4C1e2 + 8C2e2 + 2C1e3 + 4Ce3 + 2K̂e�1 + 2e + e2�
�B6�

For the stress-free condition, lateral shrinkage is

�b�e=0 = � �B7�

(C) From function (11), C̃22, C̃44, and C̃66 are derived as

C̃22 =
1

J
� ��24C1 + 24C2 + 9K� + �72C1 + 96C2 + 18K�e�

9�1 + e�2 +
��96C1 + 96C2 + 9K�e2 + 32�2C1 + C2�e3 + 16C1e4�

9�1 + e�2

− b · e
��48C1 + 96C2 + 27K� + �240C1 + 192C2 − 54K�e�

54�1 + e�3 − b · e
��384C1 + 192C2 + 27K�e2 + �256C1 + 64C2�e3 + 64C1e4�

54�1 + e�3 �
�C1�

C̃44 =
1

J
�2�C1�3 + 6e + 6e2 + 4e3 + e4� + C2�3 + 12e + 12e2 + 4e3��

3�1 + e�2

− b · e
4C2�3 + 6e + 6e2 + 2e3� + �1 + e��4C1e�3 + 3e + e2� + 9�1 + e�K�

9�1 + e�3 � �C2�

C̃66 =
1

J
�2�C1 + C2 + C1e��3 + 3e + 3e2 + e3�

3�1 + e�2 − b · e
2C2�− 3 + 3e + 3e2 + e3� + �1 + e��4C1 · e�3 + 3e + e2� + 9�1 + e�K�

9�1 + e�3 � �C3�

where 1/J=1+e−b ·e /1+e.
The prestresses in all three directions are derived as

t11 =
4e�C1 + C2 + C1e��3 + 3e + e2�

3�1 + e�2 − b · e
�12C1 + 12C2 − 9K� + �72C1 + 48C2 − 18K�e

9�1 + e�3

− b · e
�120C1 + 48C2 − 9K�e2 + �80C1 + 16C2�e3 + 20C1e4

9�1 + e�3 �C4�

t22 = t33 =
4e�C1 + C2 + C1e��3 + 3e + e2�

5 − b · e
4C1�3 + 9e + 12e2 + 8e3 + 2e4� + 4C2�3 + 3e + 3e2 + e3� − 9�1 + e�2K

6 �C5�

9�1 + e�
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The magnitude of lateral shrinkage b for this function is evaluated
as

b =
nb

db

nb = 12�1 + e��C1 + C2 + C1e��3 + 3e + e2�

db = 4C1�3 + 9e + 12e2 + 8e3 + 2e4� + 4C2�3 + 3e + 3e2 + e3�

− 9�1 + e�2K �C6�

In the stress-free condition, lateral shrinkage is

�b�e=0 =
9�C1 + C2�

4�C1 + C2� − 3K
�C7�

(D) From function (12), C̃22, C̃44, C̃66, and t11 are the same as
those evaluated from function �11�. Only the prestresses t22= t33
are slightly different as follows:

t22 = t33 =
− 2e�C1 + C2 + C1e��3 + 3e + e2�

3�1 + e�5

+ b · e
6C1 + 6C2 + 9K + �36C1 + 24C2 + 18K�e

9�1 + e�3

+ b · e
�60C1 + 24C2 + 9K�e2 + �40C1 + 8C2�e3 + 10C1e4

9�1 + e�3

�D5�

The magnitude of lateral shrinkage b for this function is evaluated
as

b =
nb

db

nb = 6�1 + e��C1 + C2 + C1e��3 + 3e + e2�

db = 6C1 + 6C2 + 9K + �36C1 + 24C2 + 18K�e + �60C1 + 24C2

+ 9K�e2 + �40C1 + 8C2�e3 + 10C1e4 �D6�

in the stress free condition, lateral shrinkage is

�b�e=0 =
6�C1 + C2�

2�C1 + C2� + 9K
�D7�

(E) From function (13), C̃22, C̃44, and C̃66 are derived as

C̃22 =
1

J
�4C1 + 4C2 + 2C3 + b

2e�2C1 + 2C2 + C3 + 3C4�
1 + e

�
�E1�

C̃44 =
1

J
�2�C1�1 + e�2 + 2C2 · �1 + 4e + 2e2��

�1 + e�2

− b
2e�C3�1 + e�2 − 2C2 · e · �2 + e��

�1 + e�3 � �E2�

C̃66 =
1

J
�2C1 + 2C2 − 2C2 · e − b

2e�C2e − C2 + C4�
1 + e

� �E3�

where 1/J=1+e−b ·e /1+e.
The prestresses in all three directions are derived as

t11 = 2e · �2C2 + 2C1 + C1 · e� + b
2e�C4 − 2C1 · e + C1 · e2�

1 + e

�E4�
Journal of Applied Mechanics
t22 = t33 =
2e�− C1�1 + e� + C2�− 1 + e + e2��

�1 + e�2

+ b
2e��C1 + C4��1 + e�2 + C2�

�1 + e�3 �E5�

The magnitude of lateral shrinkage b for this function is evaluated
as

b =
�1 + e��C1�1 + e� − C2�− 1 + e + e2��

C2 + C1�1 + e�2 + C4�1 + e�2 �E6�

In the stress-free condition, lateral shrinkage is

�b�e=0 =
C1 + C2

C1 + C2 + C4
�E7�
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Crack Identification in Thin Plates
With Anisotropic Damage Model
and Vibration Measurements
Many approaches on modeling of cracks in structural members have been reported in the
literatures. However, most of them are explicitly developed for the purpose of studying the
changes in static and dynamic responses of the structure due to the crack damage, which
is a forward problem mathematically. Thereby the use of these models is inconvenient or
even impossible for detecting damage in structures from vibration measurements, which
is usually an inverse problem. An anisotropic damage model is proposed for a two-
dimensional plate element with an edge-parallel crack. The cracked plate element is
represented by a plate element with orthotropic anisotropic material expressed in terms
of the virgin material stiffness and a tensor of damage variables. Instead of using the
effective stress concept, strain equivalence, or strain energy equivalence principles, the
vector of damage variables is identified based on the principle of equivalent static and
dynamic behaviors. A nonmodel-based damage identification approach is developed in-
corporating the proposed anisotropic model and the estimated uniform load surface
curvature (ULSC) from vibration measurements. The actual length of the crack is then
predicted from the identified variables based on conservation law of potential energy for
crack growth. The validity of the methodology is demonstrated by numerical examples
and experiment results with comparison to results from existing strain energy equivalence
theory. �DOI: 10.1115/1.1985432�
1 Introduction
The presence of a crack in a structural member introduces a

local flexibility affecting its static behavior and vibration re-
sponse. Many efforts have been devoted by structural engineers to
the research in modeling the crack-induced flexibility and inves-
tigating its effect on dynamic characteristics of the damaged struc-
ture. Dimarogonas �1� has summarized these works into three cat-
egories, namely: Continuous model, discrete-continuous model,
and discrete models, i.e., finite element models.

Historically the earliest method to model a fatigue crack in a
beam is proposed by Hetenyi �2� for determining the static deflec-
tion of beams with nonconstant cross sections, in which a crack is
represented by additional external equivalent loads. This method
is further developed by Kirsmer �3�, Thomson �4�, and Petroski
and Glazik �5� to study the vibration response of the beams or
shells with fatigue cracks. However, the lack of explicit relation
between the size of the crack and the magnitude of its external
equivalent load makes it infeasible for the sensitivity analysis with
the modal parameters of the structural members. Another ap-
proach related to the continuous model divides the cracked mem-
bers into sub-domains by the crack lines. Special boundary con-
ditions along the crack line are introduced �6–8� to connect the
sub-domains. The principal limitation of these continuous models
is the fact that their partial differential-based mathematical deri-
vation can provide sufficiently accurate results only in the case
when the structural members have a very simple geometry.

In the discrete-continuous models, a crack in a structural mem-
ber is represented by additional spring-like elements. A system
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with two parts of the undamaged member jointed with specific
spring elements is created to model the cracked member in this
manner. Many special compliance matrices for the spring ele-
ments were studied by the laws of fracture mechanics �9�. These
methods can successfully be used for modeling cracks in one-
dimensional members. However, in the case of two or three-
dimensional members, this approach is practically inapplicable
due to the fact that the large number of equations required for the
boundary conditions of the connecting spring elements is not
available.

Real structures are more complicated than the geometrically
simple ones described by the analytically continuous or discrete-
continuous models. Researchers hence started to use discrete
models to study the cracked structures, in which the finite element
method �FEM� is the most popular and commonly utilized. From
the published literature on FEM-based model of a cracked plate,
one may find mainly three groups of methods. The simplest model
represents the crack as a reduction in the elasticity modulus of the
element at the crack position �10� or a reduction in the cross-
sectional area of the element �11�. These models have been suc-
cessfully used in damage localization of plate-like structures
�12,13�. However, as these methods study the approximate crack
size and location at the element level, a very fine finite element
mesh is required to avoid large error.

Another method models a crack by separating the nodes of
finite elements along the crack line �14�. To properly model the
singular character of the stress and strain fields around the crack
tip, a very dense mesh of finite elements or singular-shaped iso-
parametric elements �15� are used to cover the crack tip area.
Obviously, this method can model the cracked structure very well,
but is not suitable or feasible for damage identification. This is
due to the low computation efficiency associated with the large
number of finite element. Also a finite element mesh has to be
constructed for one suspected location of damage in the plate at
one time.
In the third group of methods, a rectangular plate element with
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an open and depth-through crack parallel to the plate boundary is
modeled �16–18� The stiffness matrix of a cracked element is
written as

K = TF−1TT

where F is the matrix representing the sum of the flexibility of
noncracked plate and the additional flexibility due to the crack,
and T is a transformation matrix. However, as the derived stiffness
matrix cannot be explicitly parametrized in terms of damage vari-
able�s� to indicate the location, orientation, and the extend of the
crack, it is still difficult to incorporate this model into the inverse
problem of structural damage identification.

All the above-mentioned crack models were explicitly proposed
for the purpose of studying the static behavior or dynamic re-
sponse of the cracked structure. The system parameters are usu-
ally not related directly to the damage variables. Generally, it is
not suitable to use them for solving the inverse problem of dam-
age identification. Therefore, a damage detection oriented crack
model for plate-like structure is in demand.

2 Anisotropic Model of Elliptical Crack With Strain
Energy Equivalence

The earliest crack model oriented to damage identification is
probably presented by Lee et al. �21�, although their work origi-
nally focuses on fracture mechanics and aims to derive a damage
evolution equation that is consistent with the continuum damage
mechanics. Prior to Lee and his colleagues’ effort, there have been
a number of theories developed on continuum damage mechanics
to derive the equivalent constitutive equation of a damaged mate-
rial and its crack growth law on the basis of the strain equivalence
principle introduced by Lemaitre �19� or the stress equivalence
principle by Simo and Ju �20�. By introducing the strain energy
equivalence principle as an alternative to the above principles, an
effective stiffness model of the damaged material can be obtained
in terms of the undamaged material properties and damage vari-
able�s� as illustrated in Fig. 1, where C denotes the elastic stiff-

ness of the intact host element, C̄ is the effective continuum stiff-
ness of the damaged host element, d is the selected damage
variable �or tensor�, and � denotes the equal strain on the bound-
aries of the intact and damaged host elements.

Restricting the strain energy principle to a two-dimensional
elastic solid under biaxial stress ��1 and �2� and inplane shear
��12� at infinity, Lee et al. �21� introduced a damage in the form of
an elliptical through crack with the major axis �length 2a� and the
minor axis �length 2b�, respectively, aligned with the Cartesian
coordinates 1 and 2. For the intact state of the isotropic solid and
the effective stiffness model of the damaged solid, the strain en-
ergy contained in the circular host element of radius R can be
expressed, respectively, as

V0 =
1

2
�R2h� �1

�2

�12
�

T

�C11 C12 0

C12 C22 0

0 0 C66
�� �1

�2

�12
� ,

�1�

Fig. 1 The effective stiffness model from strain energy equiva-
lence principle
Journal of Applied Mechanics
Veq =
1

2
�R2h� �1

�2

�12
�

T�C̄11 C̄12 0

C̄12 C̄22 0

0 0 C̄66

�� �1

�2

�12
�

where h denotes the thickness of the plate-like solid. For plane
stress condition, the intact stiffness coefficients are defined in
terms of the usual engineering constants as

C11 = C22 =
E

1 − v2 , C12 =
vE

1 − v2 , and C66 = G ,

in which E ,v ,G denote the Young’s modulus, Poisson’s ratio and
Shear modulus, respectively.

The strain energy released during the growth of the elliptical
cavity has been derived by Sih and Liebowitz �22� as

V1 =
1

2
�a2h� �1

�2

�12
�

T

�C11e11 C12e12 0

C12e12 C22e22 0

0 0 C66e66
�� �1

�2

�12
� �2�

where the coefficients eij generally depend on the
Poisson’s ratio and the cavity geometry. For plane stress
condition, one can get e11=2v2 / �1−v2�+ �1−v�s / �1+v�+2s2 / �1
−v2� , e22=2/ �1−v2�+ �1−v�s / �1+v�+2v2s2 / �1−v2� , e12=2/ �1
−v2�− �1−v�s /v�1+v�+2s2 / �1−v2� and e66= �1+s�2 / �1+v�, with
s=b /a denotes the aspect ratio of the elliptical cavity.

According to the strain energy equivalence principle, the strain
energy contained in the effective stiffness continuum model of the
damaged circle region can be expressed as

Veq = Vd = V0 − V1 �3�

Substituting �1� and �2� into �3�, one finds the effective stiffness
coefficients of the damaged plate cell as

C̄ij = Cij�1 − eijd� �4�

where the damage variable d= �a /R�2 represents the ratio of the
effective damaged area to the total area of the considered solid
host element, and the coefficients eij represents the anisotropic
behavior of the host element due to the crack.

By further restricting the aspect ratio of the elliptical hole s
=0, Lee et al. �23� studied the effective stiffness model of a thin
plate with line micro-cracks, and then developed a model updating
technique to identify the damage size and orientation by using the
frequency response functions measured from the damaged plate.
Numerical examples were simulated for demonstration; however,
the validity of the theory requires the support from experimental
evidences. According to the authors’ knowledge, the following
considerations have to be taken into account before Lee’s theory
can be used in practical applications:

�1� The crack released strain energy calculated from Eq. �2� is
derived and only valid for an infinite plate containing a
central crack subjected to uniform stress load. Although the
result can be approximately used for a micro-crack away
from the plate boundary, corrections must be made for the
case of a macro-crack to take into account the finite dimen-
sions of the plate and different load patterns.

�2� Equation �2� is derived based on the Griffith theory of ideal
brittle fracture mechanics. For ductile materials, plastically
deforming area induced by stress concentration around the
crack tip will consume a part of the released energy, which
is usually not negligible.

�3� The model updating based damage identification technique
requires an initial FEM model to represent the undamaged
structure. However, a good quality model for a complex
structure is difficult to achieve. Model reduction or simpli-
fication could easily result in initial model errors smearing
the damage induced localized changes in the updated

model.
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Thus, the objectives of this paper include: �1� To introduce a
new effective stiffness model for thin plate elements with a central
line-crack, in which the damage scalar in Lee et al. �23� model is
expanded and replaced by a vector of damage variables; �2� as the
crack released strain energy is difficult to estimate accurately due
to the complexity of fracture mechanics, a principle of behavior
equivalence is used to determine the damage variables; �3� to
develop a nonmodel-based damage identification method requir-
ing only the measured uniform load surface curvatures �ULSC�
from the undamaged and damaged plates; �4� to carry out numeri-
cal simulation and experiment studies to verify the validity of the
proposed methodology.

3 Anisotropic Crack Model From Dynamic Charac-
teristic Equivalence

The problem considered in this section is a thin plate with a
nonpropagating, open crack parallel to one side of the plate. It is
assumed that the crack is depth-through but narrow so that it does
not change the plate mass. With a small rectangular plate element
containing the crack, as shown in Fig. 2, one can write the con-
stitutive relations between the internal moments and rotational
displacement derivatives as

M�x,y� = � Mx

My

Mxy
� = D�

�
�x 0

0 �
�y

�
�y

�
�x

�	�x

�y

 = DL� �5�

where M�x ,y� denotes the internal moments per unit length, and
��x �y�T denotes the rotation of the normal planes induced by the
moments. The matrix D contains the flexural and twisting stiffness
components of the plate. For an intact plate with isotropic elastic-
ity, and plane stress behavior, the constitutive matrix D is defined
as D0 in the form of

D0 =
h3

12
C �6�

where the matrix C represents the stress-strain constitutive stiff-
ness of isotropic material.

A crack will induce local flexibility in the plate. According to
Lee et al. �23� continuum elastic stiffness theory, the cracked plate
element would exhibit orthotropic stiffness properties compatible
with the orientation of the crack line. Furthermore, based on the
observation from fracture mechanics point of view that the highest
stress intensity at the crack edge along the major axis direction
would effectively reduce the stiffness in the minor axis direction,
a rational supposition can be made that the crack will mainly
affect the flexural stiffness normal to the crack line, while contrib-
uting relatively little effect on the plate stiffness parallel to the
crack. �In Lee’s model, the stiffness reduction along the major
axis is v2 times that along the minor axis�. In order to verify this
presumption, the cracked plate element is represented by an effec-
tive element of continuum anisotropic material with the major

Fig. 2 Thin plate element hosting a through crack parallel to
its edge
axis of the material parallel to the crack line and the minor axis

854 / Vol. 72, NOVEMBER 2005
normal to the crack. Thus, under the plane stress condition, the
constitutive matrix D of the cracked element can be written as

D =
h3

12
C̄ �7�

where the stiffness components are C̄11=E1 / �1−v12v21� , C̄22

=E2 / �1−v12v21� , C̄12=v12E1 / �1−v12v21�=v21E2 / �1−v12v21� and

C̄66=G.
A vector of damage variables, �� � 	�, is selected to relate the

effective continuum stiffness model of the cracked plate element
to the isotropic stiffness of the undamaged material as

E1 = E�, v21 = v, E2 = E�, G12 = G	 �8�

where � ,�, and 	 denotes stiffness reduction factors due to the
crack. Considering the relation v12/E2=v21/E1, one gets

v12 = v21
E2

E1
= v

�

�
�9�

Substituting �8� and �9� into �7�, one obtains

D =
h3

12�
E�2

� − �v2

vE��

� − �v2 0

vE��

� − �v2

E��

� − �v2 0

0 0
E	

2�1 + v�
� �10�

To determine the coupled damage variables, the above-
mentioned principles of strain equivalence and strain energy
equivalence do not work. They are extended to a more general
principle that the effective continuum model of a damaged struc-
ture should have identical macro-behaviors with those exhibited
by the real damaged structure. The macro-behaviors here include
the static and dynamic characteristics of the structure such as de-
formations under loads, natural frequencies, mode shapes, fre-
quency response functions, etc. Based on this principle, the fol-
lowing section presents a methodology to identify the damage
variables using the estimated ULSC from vibration measurements.

4 Nonmodel-Based Damage Identification With ULSC

4.1 Deflection and Curvature Formulations. According to
the Kirchhoff’s theory, the shear deformations are neglected and
we have

�w − � = 0 �11�
Substituting �11� into �5�, we get

M�x,y� = D
�x,y� �12�

where the vector 
�x ,y�= ���2w /�x2���2w /�y2�2��2w /�x�y��
= �
x
y
xy� contains the flexural curvatures and twisting curvature
at the middle plane of the plate.

Now one can define the transverse deflection function w�x ,y� as
a biquadratic polynomial

w�x,y� = p� �13�

where the vector p= �1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3�, and
the vector �= ��1�2¯�12� denotes the unknown coefficients. It is
then convenient to express the deflection in terms of displace-
ments at the four nodes of the plate element as

w�x,y� = H�x,y�w̄ �14�

where H�x ,y� is the vector of isoparametric shape functions of the
element, and w̄= �w1w2w3w4�x1�x2�x3�x4�y1�y2�y3�y4� is the nodal
displacement vector. Substituting �14� into the constitutive rela-

tion �12� yields
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M�x,y� = DB�x,y�w̄ �15�

where B�x ,y�= ��2H /�x2 ;�2H /�y2 ;2��2H /�x�y��. Equation �15�
relates the internal moments at any point in the element with the
nodal displacements. The internal moments at the four nodes are
found by substituting the corresponding nodal coordinates,
�xi ,yi�i=1…4, into Eq. �15�. Writing in matrix form

	M̄B

M̄T


 = KBT KBR

KTT KTR
�	w̄T

w̄R

 = Kw̄ �16�

where M̄B= �Mx1My1Mx2My2Mx3My3Mx4My4�T denotes the bend-

ing moments at the four nodes, and M̄T= �Mxy1Mxy2Mxy3Mxy4�T

denotes the nodal twisting moments. w̄T= �w1w2w3w4� denotes the
translational DOFs at the four nodes, and w̄R denotes the nodal
rotational DOFs. The matrix K represents the general constitutive
relation between the nodal loads and nodal displacements. Rewrit-
ing Eq. �16� in partitioned form, the rotational and translational
displacements can be expressed separately as

w̄R = KBR
−1M̄B − KBR

−1KBTw̄T �17a�

w̄T = KTT
*M̄T − KTT

*KTRw̄R �17b�

where the superscript * denotes the pseudo inverse of the matrix.
Detailed formulation of Eq. �17� is referred to Appendix A.

Consider a group of four adjacent rectangular plate elements as
shown in Fig. 3, in which all the elements are suspected of crack
damage. For the element �i , j�, the rotation about y axis, �x, at its
second node can be evaluated using Eq. �17a�

��x2��i,j� = � 2a

�Eh3 Mx1 −
2av

�Eh3 My1 +
4a

�Eh3 Mx2 −
4av

�Eh3 My2

+
w2 − w1

a
�

�i,j�
�18�

Similarly, the rotation about y axis at the first node of the element
�i+1, j� can be estimated by

��x1��i+1,j� = �−
4a

�Eh3 Mx1 +
4av

�Eh3 My1 −
2a

�Eh3 Mx2 +
2av

�Eh3 My2

+
w2 − w1

a
�

�i+1,j�
�19�

According to the continuity condition, the slope at node 2 of the
element �i , j� equals to the slope at the node 1 of the element
�i+1, j�. Thus, we have

�x2
�i,j� = �x1

�i+1,j� �20�

It is important to note that Eqs. �18�–�20� are derived for the
damaged plate.

The moment-curvature relationship for an intact plate can be

Fig. 3 Four adjacent rectangular plate elements
obtained from Eqs. �5� and �6� as
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M̃x�x,y� =
Eh3

12�1 − v2�
�
̃x�x,y� + v
̃y�x,y�� ,

M̃y�x,y� =
Eh3

12�1 − v2�
�
̃y�x,y� + v
̃x�x,y�� �21�

M̃xy�x,y� =
Eh3

12�1 + v�

̃xy�x,y�

where the superscript � denotes the terms for the intact plate. It is
assumed that the applied loads only produce small deflection in
the plate structure, and that the additional deflection induced by
the crack damage is also small such that the internal forces in the
damaged structure can be approximately taken as those for the

intact structure, which means Mx�M̃x , My �M̃y, and Mxy

�M̃xy. Therefore, one can directly substitute Eq. �21� into Eqs.
�18�–�20� to have

� 
̃x1 + 2
̃x2

�
�

�i,j�
+ �2
̃x1 + 
̃x2

�
�

�i+1,j�
= 6
x2

�i,j� �22a�

Similarly considering the slope continuity condition at node 3
of element �i , j� and the node 1 of element �i+1, j�, we have
�x3

�i,j�=�x4
�i+1,j�, yielding

� 
̃x4 + 2
̃x3

�
�

�i,j�
+ �2
̃x4 + 
̃x3

�
�

�i+1,j�
= 6
x3

�i,j� �22b�

Also, from the slope continuity condition of rotation �y along
the y direction we have �y4

�i,j�=�y1
�i,j+1� and �y3

�i,j�=�y2
�i,j+1�,

leading to

� 
̃y1 + 2
̃y4 + v�
̃x1 + 2
̃x4�
�

�
�i,j�

+ � 
̃y4 + 2
̃y1 + v�
̃x4 + 2
̃x1�
�

�
�i,j+1�

= 6�1 − v2�
y4
�i,j� + S14

�23a�

and

� 
̃y2 + 2
̃y3 + v�
̃x2 + 2
̃x3�
�

�
�i,j�

+ � 
̃y3 + 2
̃y2 + v�
̃x3 + 2
̃x2�
�

�
�i,j+1�

= 6�1 − v2�
y3
�i,j� + S23

�23b�

respectively, where

S14 = �v�
̃x1 + 2
̃x4� + v2�
̃y1 + 2
̃y4�
�

�
�i,j�

+ �v�
̃x4 + 2
̃x1� + v2�
̃y4 + 2
̃y1�
�

�
�i,j+1�

and

S23 = �v�
̃x2 + 2
̃x3� + v2�
̃y2 + 2
̃y3�
�

�
�i,j�

+ �v�
̃x3 + 2
̃x2� + v2�
̃y3 + 2
̃y2�
�

�
�i,j+1�

.

Next, the transverse deflection at the nodes are estimated from
Eq. �17b�, and taking into account the continuity condition of
deflection w along the x and y directions separately, we have

�i,j� �i+1,j� �i,j� �i,j+1�
w2 =w1 and w4 =w1 , leading to
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� 
̃xy1 + 
̃xy2 + 
̃xy3 + 
̃xy4

	
�

�i,j�
+ � 
̃xy1 + 
̃xy2 + 
̃xy3 + 
̃xy4

	
�

�i+1,j�

= 4�
xy2 + 
xy3��i,j� �24a�

and

� 
̃xy1 + 
̃xy2 + 
̃xy3 + 
̃xy4

	
�

�i,j�
+ � 
̃xy1 + 
̃xy2 + 
̃xy3 + 
̃xy4

	
�

�i,j+1�

= 4�
xy3 + 
xy4��i,j� �24b�

The following observations can be made based on Eqs.
�22�–�24�:

�1� The coupled damage variables � ,�, and 	 in the crack
model in Eq. �10� are decoupled by the curvature expres-
sions on the nodal transverse deflection.

�2� The curvature-based formulations are valid for any load
condition that satisfies the small deformation assumption.

�3� Provided that curvatures of the intact and cracked plates, 
̃
and 
, respectively, are measured on a regular mesh of the
rectangular plate, three sets of equations containing the de-
coupled damage variables can be established separately in
Eqs. �22�–�24�. Taking the reciprocal of the damage vari-
ables as unknowns, the equations are linear and
determinate.

4.2 ULS Curvatures. This section presents a method to esti-
mate the plate curvatures under a full set of uniform unit load
from the vibration measurements. For a linear structural system
with n degrees-of-freedom, its flexibility matrix can be expressed
by the superposition of mass normalized modes �g, where
�g

TM�g=1 �g=1,… ,n�, as �24�

F = �
g=1

n
�g�g

T

�g
2 �25�

where �g is the gth natural frequency. Physically, each element of
the flexibility matrix, fk�, can be interpreted as the displacement at
the kth DOF due to a unit load at �th DOF. Thus, the deflection
vector of a plate under uniform unit load can be evaluated by

u = F · L �26�

where L= �1,… ,1�1n
T is the unit vector representing the uniform

load acting on the plate. The deflection component uk can be
expressed as

uk = �
l=1

n

fkl = �
g=1

n

�
l=1

n
�g�k��g���

�g
2 �27�

This modal based formulation of the structural deflection vector
under uniform load was defined as Uniform Load Surface �ULS�
by Zhang and Aktan �25�. An approach to estimate the ULS cur-
vature of plate structures using the Chebyshev polynomial ap-
proximation has been proposed by Wu and Law �26�. This ap-
proach is adopted in this paper, and is outlined as follows.

The ULS function of a plate can be modeled by the Chebyshev
polynomial in two variables:

u�x,y� = �
r=1

N

�
s=1

M

crsTr�x�Ts�y� �28�

where Tr�x� ,Ts�y� are the first kind Chebyshev polynomials, and
N ,M are their orders. It is assumed that there are Q measuring
points on the rectangular mesh of the plate. The ULS value,
u�xp ,yq�, can be obtained at all the measuring points from Eq.
�27�. When substituting them into Eq. �28� separately, one has a

system of Q equations written in matrix form
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�T�xp�T�yq��QP�crs�P1 = �u�xp,yq��P1 �29�

where P=NM. The coefficient vector �crs� can then be solved
by the least-squares technique

�crs�P1 = ��T�xp�T�yq��QP
T �T�xp�T�yq��QP�−1

�T�xp�T�yq��QP
T �u�xp,yq��Q1 �30�

By making use of the orthogonal property of Chebyshev polyno-
mial, the curvature of the ULS is obtained as the second deriva-
tives of the Chebyshev polynomials in Eq. �28� as

ucxx = �
r=1

N

�
s=1

M

crs

�Tr
2�x�

�x2 Ts�y�

ucyy = �
r=1

N

�
s=1

M

crsTr�x�
�Ts

2�y�
�y2 �31�

ucxy = �
r=1

N

�
s=1

M

crs

�Tr
2�x�

�x2

�Ts
2�y�

�y2

Now considering that Eqs. �22�–�24� are valid for an arbitrary
load satisfying the small deflection assumption and the behavior
equivalence principle that the effective model has equal deflection
curvatures as those obtained from the cracked plate when subject
to identical loads, one can replace the curvature terms 
̃ and 

with the measured ULS curvatures in Eq. �31� from the undam-
aged and damaged states, respectively. The resulting Eqs.
�22�–�24� form the curvature relationship between the intact and
cracked plates subjected to a uniform unit load, from which the
damage variables can then be solved.

4.3 Crack Length Prediction. Although no known exact so-
lution exists for the released energy of finite plate with a crack
under arbitrary bending and twisting moments, the following ap-
proximate formulas are derived such that the crack length can be
predicted from the identified damage variables. The elastic strain
energy contained by the undamaged plate element can be ex-
pressed as

Ũ =
1

2�
0

b�
0

a

M̃�x,y�
̃�x,y�dxdy =
1

2�
0

b�
0

a


̃T�x,y�D0
̃�x,y�dxdy

�32�

Separately writing the curvature fields of the plate element in the
nodal terms as


̃x = �
i=1

nn

Hi�x,y�
̃x,i, 
̃y = �
i=1

nn

Hi�x,y�
̃y,i, 
̃xy = �
i=1

nn

Hi�x,y�
̃xy,i

�33�

where Hi�x ,y� is the isoparametric shape function at the ith node
and nn denotes the number of nodes per element, Eq. �32� can be
rewritten as

Ũ =
h3

24

̃nd

T�
0

b�
0

a

HTCHdxdy
̃nd �34�

where 
̃nd= �
̃x,1 
̃y,1 
̃xy,1¯ 
̃x,nn 
̃y,nn 
̃xy,nn�T denotes the nodal
curvatures and

H = �H1 0 0 ¯ Hnn 0 0

0 H1 0 ¯ 0 Hnn 0

0 0 H1 ¯ 0 0 Hnn
� .

Now considering the cracked plate element exhibits identical
deflection curvatures as the undamaged element, one can infer the

˜
equality of the moment load M�x ,y��M�x ,y� according to the
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small deflection assumption. Hence, by replacing the isotropic
material with the identified effective stiffness model, the strain
energy of the cracked plate element is similarly written as

U =
h3

24

̃nd

T�
0

b�
0

a

HTC̄Hdxdy
̃nd �35�

The crack released strain energy is approximately estimated
through the stress intensity around the crack as

Uk =
1

E�−c

c �
−h/2

h/2

�KI
2 + KII

2 �dzd� �36�

where c indicates half length of the crack. KI and KII are the stress
intensity factors corresponding to the two modes of cracking �27�.
Assuming the crack surfaces are subject to equal and opposite
arbitrary bending and twisting moments in an infinite thin plate
�assuming plane stress state�, the stress intensity factors are writ-
ten as

KI
inf =

12z

h3��c
�

−c

c

My����c + �

c − �
d�

=
z

��c
�

−c

c

�C12Hr1 + C22Hr2��c + �

c − �
d�
̃nd

�37�

KII
inf =

− 12z

h3��c
�

−a

a

Mxy����c + �

c − �
d�

=
− z
��c

�
−c

c

C66Hr3�c + �

c − �
d�
̃nd

As Eq. �37� is only suitable for infinite plate with a crack, it is
necessary to correct it for the finite plate. According to the results
from Yagawa and Nishioka �28�, the difference of the correction
factor is small for different plate width-to-crack length ratio 0
�h /c�1, and approximately equal correction factors can be used
to correct both the stress intensity factors of opening-type cracks
�type I� and sliding-type cracks �type II�. Therefore, the corrected
stress intensity factors are obtained as

KI = KI
inff�s�, KII = KII

inff�s� �38�

where the correction factor f�s� can be obtained through polyno-
mial interpolation �28� and plotted in Fig. 4, where

f�s� = 1.0 + 0.0187s + 0.1825s2 + 2.024s3 − 2.431s4 �39�

and s=2c /a.
Assuming the crack propagates in quasi-static state and neglect-

ing the energy loss by thermal terms, one will get the following

Fig. 4 Finite element model of the cracked thin plate
equilibrium of strain energy:
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Ũ = U + Uk �40�
Substituting Eqs. �34�–�36� into �40�, one obtains

h3

24

̃nd

T�
0

b�
0

a

HTCHdxdy
̃nd

=
h3

24

̃nd

T�
0

b�
0

a

HTC̄Hdxdy
̃nd

+
1

E

̃nd

T�
−c

c �
−h/2

h/2
z2

�c
f2��

−c

c

�C12Hr1 + C22Hr2

− C66Hr3��c + �

c − �
d��dzd�
̃nd �41�

Since Eq. �41� are valid for arbitrary nodal deflection curvatures

̃nd that statisfies the small deformation assumption, it can be
simplified into a characteristic equation of the crack half-length c.
Provided the damage variables in the effective constitutive matrix

C̄ are identified, the crack length can be numerically solved by the
Newton-Raphson method.

5 Numerical Examples
An aluminium plate with free boundary condition is studied in

this section to validate the proposed methodology. The plate has
the dimensions of 400 mm300 mm3 mm. The whole intact
plate is divided into 43 plate elements. An open and through
crack, as shown in Fig. 5, is then assumed to occur in element 6
with a length of 80 mm with the crack line parallel to the x axis.
The intact and cracked plates are separately modeled using an
open-source finite element toolbox, called OPENFEM, integrated
with MATLAB. The natural frequencies and corresponding mode
shapes of the plate at the 20 finite element nodes are “measured”
through eigenvalue analysis of the finite element model. The ULS
curvatures are then estimated from the modal data via the proce-
dure described in Eqs. �27�–�31�, and they serve as input into the
MATLAB program based on the nonmodel ULSC algorithm for the
identification of crack location and damage variables.

According to the proposed effective stiffness model for the
cracked plate element, there are three unknowns for each suspi-
cious element. Therefore, we have totally 123 unknowns for the
whole model of the cracked plate. Referring to Eq. �22�, one can
obtain 18 equations from the slope continuity condition of rotation
�x to construct an over-determined system for the values of crack

Fig. 5 Correction factor on stress intensity factor for finite
plate
parameter �i �i=1,… ,12�. Similarly, from the slope continuity
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r t
condition of rotation �y and the transverse deflection w in Eqs.
�23� and �24�, we obtain a total of 16 equations to solve the
unknowns �i and 17 equations for the solution of 	i. The resulting
damage indices are shown in Fig. 6. It is clear that element 6 is
damaged. Further, for this cracked element, the relative stiffness
normal to the crack line, given as �=0.6832, and the inplane
twisting stiffness, 	=0.7717, show clearly larger reductions from
the initial value than the relative stiffness along the crack line
shown as �=0.9465. This result verifies the supposition we pro-
posed earlier that a crack in a plate element mainly affects its
stiffness normal to the crack line. The crack length 2c predicted
from the identified damaged variables equals to 86.15 mm, which
is close to the true value with an error less than 8%.

6 Experimental Verification
Similar to many existing validated models, an experimental

verification is performed to investigate the problems with a real
working environment. The aluminum plate specimen has the di-
mension of 600 mm500 mm3 mm. Figure 7 shows the ex-
perimental setup for testing. A rectangular mesh of 76 measur-
ing points is outlined on each plate. The intact plate is suspended
from a rigid frame by two steel wires of 0.5 mm in diameter and
0.75 m in length to simulate the free boundary condition. An
impulsion signal was generated by hitting the hammer at each
measuring point, and the vibration response of the plate due to the
impulse is collected by an accelerometer model B&K 4370 as
shown in the figure. Both signals are amplified and inputted into a
commercial modal testing and analysis system DASP2000. The
natural frequencies and corresponding mode shapes of the plate at
the rectangular mesh are then extracted through a MISO transfer
function analysis.

An artificial crack is cut in the specimen, as shown in Fig. 8�a�.
To verify the proposed crack model and identification method

Fig. 6 Identified crack parameter fo
with cases of different crack length, a scheme of crack cutting is
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devised and listed in Table 1. The crack in the first state is 0.5 mm
wide, and it is 0.25 mm wide for the other two states. After each
crack cutting exercise, the above hammer test is repeated to obtain
the modal data of the plate for each damage state. The first five
natural frequencies of the plate specimen in different damage
states are also listed in Table 1. The ULS curvatures for the un-
damaged plate and the cracked plate in different session are esti-
mated from the measured modal data of the first five modes. The
identified damage parameters for each crack state are plotted in
Fig. 9, where the x axis measures the relative crack length defined
by 2c /a, here a denotes the dimension of the crack containing
element along the x axis.

Besides testing the plate specimen with a crack of different
length, a refined finite element model is also constructed by

he numerical example of thin plate
Fig. 7 Diagram of the experimental system
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model
OPENFEM to model the cracked aluminium plate, as shown in Fig.
8�b�, to study the relationship between values of the proposed
damage variables and the crack length. The finite element model
has initially a crack of 40 mm in length, and then the crack is
lengthened in steps of 20 mm each and the finite element mesh is
modified for each case. In each case with a definite crack length,
the ULS curvatures are estimated from the “measured” modal data
of the plate model, and then they are used as references for crack
identification. The resulting damage variables are shown sepa-
rately in Figs. 9�a�–9�c� with symbol “*,” and they are curve-fitted
as shown. The other curves shown in Figs. 9�a�–9�c� with symbol
“o” are the results from Lee et al. �21�.

It is seen that the test results are consistent with the numerical
result using the present model and identification method, with the
damage variables exhibiting the same trend of changing with the
crack propagation. Parameter � decays very slowly and changes
little, which means the stiffness reduction in the direction of crack
extension is limited. Parameter � sharply drops with the extension
of the crack indicating a remarkable reduction in the stiffness
normal to the crack line. There are two phases for parameter 	,
which represents the in-plane twisting stiffness of the cracked
plate element. Firstly, the parameter drops uniformly when the
relative crack length is less than 0.6 of the element dimension, and
then the twisting stiffness degrades abruptly as the crack propa-
gating towards the element edges. However, the results from Lee

Fig. 8 „a… Artificial cracks „session I… in the plate specimen. „b…
Finite element meshes to model the cracked plate specimen.

Table 1 Scheme of artificial crack and co
specimen

Crack information

Center �x ,y� �200,200� 1

Length �mm� Intact N/A 31.3
State I 80 31.3
State II 120 31.3
State III 160 31.3
rresponding natural frequencies of the plate

Natural frequencies �Hz� in order of modes

2 3 4 5

79 41.578 65.859 78.105 88.263
72 41.228 65.571 78.040 88.245
72 40.812 65.238 77.991 88.194
61 40.133 64.843 77.870 88.028
Journal of Applied Mechanics
Fig. 9 Damage variables from experiment and finite element
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et al. �21� are very different. Parameter � remains unchanged with
different crack length, which means the line crack never affect the
stiffness along its extension direction; while the stiffness normal
to the crack line and the twisting stiffness, shown as � and 	,
respectively, may take up negative values when the crack is close
to the element edge. The presence of these contradictory results
can be explained by the infinite plate assumption in the model of
Lee et al. �21� and the model is only suitable for micro-cracks.

7 Conclusions
Aiming at the nondestructive fault detection with vibration

measurements, an effective stiffness continuum model for a thin
plate with an edge-parallel crack is proposed based on the behav-
ior equivalence principle. The model is then incorporated into a
nonmodel system identification approach. The estimated Uniform
Load Surface curvatures for the intact and cracked plates are used
without any baseline model of the plate. The model parameters are
decoupled and solved from the resulting set of linear equation.
After the crack in each suspicious element is localized directly
from the identified damaged variables, the crack length is further
2	Eh 2	Eh
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predicted through the corrected stress intensity factors on the basis
of total potential energy conservation. In contrast to the micro-
crack model �Lee et al. �21��, the present methodology can be
applied to the identification of a larger practical crack with larger
relative length. Both numerical examples and experiment results
demonstrate that the proposed model predicts the real cracked
plate well and the identification method is effective for localizing
and quantifying the crack in thin plates.
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Appendix: Formulation of the Modal Rotational and
Translational Displacements

Equations �17a� and �17b� can be simply rewritten as

w̄R = URM̄B − VRw̄T, w̄T = UTM̄T − VTw̄R �A1�
where
UR = KBR
−1 =

⎣
⎢
⎢
⎢
⎡

− 4a

�Eh3

4av
�Eh3

− 2a

�Eh3

2av
�Eh3 0 0 0 0

2a

�Eh3

− 2a

�Eh3

4a

�Eh3

− 4av
�Eh3 0 0 0 0

0 0 0 0
4a

�Eh3

− 4av
�Eh3

2a

�Eh3

− 2av
�Eh3

0 0 0 0
− 2a

�Eh3

2a

�Eh3

− 4a

�Eh3

4av
�Eh3

4bv
�Eh3

− 4b

�Eh3 0 0 0 0
2bv

�Eh3

− 2b

�Eh3

0 0
4bv

�Eh3

− 4b

�Eh3

2bv
�Eh3

− 2b

�Eh3 0 0

0 0
− 2bv
�Eh3

2b

�Eh3

− 4bv
�Eh3

4b

�Eh3 0 0

− 2bv
�Eh3

2b

�Eh3 0 0 0 0
− 4bv
�Eh3

4b

�Eh3 ⎦
⎥
⎥
⎥
⎤

,

VR = KBR
−1KBT = �

− 1/a − 1/a 0 0 − 1/b 0 0 − 1/b

1/a 1/a 0 0 0 − 1/b − 1/b 0

0 0 1/a 1/a 0 1/b 1/b 0

0 0 − 1/a − 1/a 1/b 0 0 1/b
�

T

,

and

UT = KTT
* = �

− 3ab�1 + v�
2	Eh3

− 3ab�1 + v�
2	Eh3

− 3ab�1 + v�
2	Eh3

− 3ab�1 + v�
2	Eh3

3ab�1 + v�
2	Eh3

3ab�1 + v�
2	Eh3

3ab�1 + v�
2	Eh3

3ab�1 + v�
2	Eh3

− 3ab�1 + v�
2	Eh3

− 3ab�1 + v�
2	Eh3

− 3ab�1 + v�
2	Eh3

− 3ab�1 + v�
2	Eh3

3ab�1 + v�
3

3ab�1 + v�
3

3ab�1 + v�
3

3ab�1 + v�
3

� ,
2	Eh 2	Eh
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VT = KTT
*KTR = �

a/8 a/8 − a/8 − a/8 b/8 b/8 − b/8 − b/8

− a/8 − a/8 a/8 a/8 − b/8 − b/8 b/8 b/8

a/8 a/8 − a/8 − a/8 b/8 b/8 − b/8 − b/8

− a/8 − a/8 a/8 a/8 − b/8 − b/8 b/8 b/8
�

in which a and b are dimensions of the plate element along the x and y axes, respectively, as shown in Fig. 1.
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Stochastic Dynamics of Impact
Oscillators
The purpose of this work is to develop an averaging approach to study the dynamics of
a vibro-impact system excited by random perturbations. As a prototype, we consider a
noisy single-degree-of-freedom equation with both positive and negative stiffness and
achieve a model reduction, i.e., the development of rigorous methods to replace, in some
asymptotic regime, a complicated system by a simpler one. To this end, we study the
equations as a random perturbation of a two-dimensional weakly dissipative Hamiltonian
system with either center type or saddle type fixed points. We achieve the model-reduction
through stochastic averaging. Examination of the reduced Markov process on a graph
yields mean exit times, probability density functions, and stochastic bifurcations.
�DOI: 10.1115/1.2041660�
1 Introduction
When interactions of mechanical and structural systems with

the boundaries are of short duration, they are modeled as impacts.
Mathematically, such interactions result in nonsmooth nonlinear
effects which usually give rise to complex response characteris-
tics. Proper accounting for such nonsmooth effects has been a
roadblock, particularly in the presence of random excitation, that
must be overcome while developing accurate analytical and nu-
merical techniques. The analytical and numerical techniques pre-
sented here can be easily applied to vibrating systems with uni-
and bilateral constraints and repeated impacts, such as aircraft
flaps, gear rattle, heat-exchanger tube wear in nuclear power sta-
tions, and ships colliding against fenders.

For systems undergoing “small” amplitude vibrations, nonlin-
earities that are smooth functions of position and velocity can be
properly neglected; the nonlinear effects become observable only
when the system state moves sufficiently far from equilibrium. On
the other hand, nonsmooth nonlinearities may have a significant
effect on the dynamic response, even if the vibration amplitudes
are small. Thus, nonsmooth nonlinear effects are important in situ-
ations in which nonlinear behavior has traditionally been ignored.
This is an important difference between smooth and nonsmooth
nonlinear systems. Hence, we are concerned essentially with small
amplitude vibration in the presence of nonsmooth nonlinearity for
which the nonsmoothness is exhibited at or near equilibrium. Im-
pact discontinuities in dynamical systems, which are our primary
concern in the study, are known to result in nonlinear behavior
with possible dramatic changes in local and global stability char-
acteristics.

Nonsmooth nonlinearities due to dead band or impact with
piecewise linear restoring forces have been studied under har-
monic excitations for more than three decades. Thompson and
Ghaffari �1� studied numerically the impact oscillator which oc-
curs in the offshore environment. Using a Poincaré map, Shaw
and Holmes �2� investigated a similar system and showed compa-
rable results analytically. Shaw �3,4�, Shaw and Holmes �5�, and
Shaw and Rand �6� also looked into a similar system with some
variations. Because of the piecewise linear nature of these prob-
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lems, most of these results are obtained in exact analytic form,
based on small parameter assumptions or topological arguments.
The main interest in the references above has been to find, quan-
tify, and model basic nonlinear phenomena such as nonlinear reso-
nances and chaotic motion in rigid oscillator systems with nons-
mooth nonlinearities. These works have inspired a great deal of
recent research in impacting systems which is impossible to sum-
marize to any degree of completeness.

Although we have several results for deterministic impact prob-
lems, only a limited number of analytical results have been re-
ported for random excitations. Dimentberg and Menyailov �7�
considered a simple linear oscillator with one or two constraints—
here, the impacts are assumed instantaneous—and obtained sta-
tionary probability density under external or parametric white
noise using stochastic averaging. A single-degree-of-freedom im-
pact oscillator under external random excitations was also studied
by Fogli et al. �8�, where the impacts are modeled as springs and
the stationary probability density and the power spectral density
are obtained based on the averaging principle.

This paper deals with the nonlinear response of a general
single-degree-of-freedom nonsmooth system under stochastic ex-
citations. In the following sections, we achieve a model reduction
through stochastic averaging and the reduced Markov process
takes its values on a line for the system with a center type fixed
point. A saddle type fixed point leads to a graph with certain
gluing conditions at the vertex of the graph. To get this reduced
space, we consider the flow zt on R2 generated by the fast motion,
and define an averaging operator, limiting domain, and generator.
Finally, we apply these results to a vertical pendulum problem to
obtain mean exit times and probability density functions. Numeri-
cal simulations are also used to verify these results.

2 Problem Statement
The general form of the equations studied here is given by

q̈t +
�U

�q
�qt� + G�qt, q̇t�q̇t = �1��t�qt + �2��t�,

for −
�

2
� qt �

�

2
, �1�

where q�R� represents a generalized coordinate defined for

R�
def
= ��∆/2,∆/2) and the potential U :R→R has an elliptic or

saddle fixed point. The above equation is augmented with the

impact law,
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q̇t+
= − rq̇t−

, at qt* = ±
�

2
, �2�

where t� are the time prior and after the instant t* of impact,
which is determined by the condition qt* = ±� /2. There are sev-
eral different models for an impact oscillator, but the simplest is
the coefficient of restitution rule, q̇t→−rq̇t, which is adopted in
this paper. This rule provides an instantaneous reversal of velocity.
Positive coefficients of restitution, 0�r�1, indicate a loss of
energy at impact. In �1�, G represents dissipative terms and � and
� represent mean zero, stationary, independent Gaussian white
noise processes. More precisely, we require that U�C	�R ;R+�
and that

�q � R:U��q� = 0� = �q � R:U�q� = 0� = 0,

and that 
2 def
= U�(0)�0 for an elliptic fixed point and


2 def
= �U�(0)�0 for a saddle fixed point. For convenience, we

shall define

Uh
e�q�

def
= U�q� − 1

2
2q2 and Uh
s�q�

def
= U�q� + 1

2
2q2, q � R ,

for the elliptic and saddle fixed points, respectively. Since an exact
solution of �1� is not known, the purpose of this paper is to de-
velop a reduction procedure to approximate the solutions of �1� by
a graph-valued Markov process.

In order to make use of the periodic properties of the transfor-
mations introduced by Zhuravlev �9�, let us define y=q� /�. Then

ÿt +
�V

�y
�yt� + g�yt, ẏt�ẏt = �1��t�yt + �2��t�, for −

�

2
� yt �

�

2

�3�

and the impact law simplifies to

ẏt+
= − rẏt−

, at yt* = ±
�

2
. �4�

Following Zhuravlev �9�, let us introduce the following
2�-periodic functions

�x�
def
= � x if −

1

2
� � x �

1

2
� ,

− x + � if
1

2
� � x �

3

2
� , �

M�x�
def
= ��x� = � 1 if −

1

2
� � x �

1

2
� ,

− 1 if
1

2
� � x �

3

2
� , �

and consider a nonsmooth transformation

yt = �xt�, ẏt = M�xt�ẋt, ÿt = M�xt�ẍt + M��xt�ẋt
2, �5�

which transforms �3� with elastic impacts �that is, r=1� to

ẍt +
�V

�x
��xt�� + g„�xt�,M�xt�ẋt…ẋt

= �1��t�M�xt��xt� + �2��t�M�xt� , �6�

where we have made use of �4�. In the case of inelastic impact
�0�r�1�, one can get a similar result from the following trans-
formation by Dimentberg and Menyailov �7�, which is based on
Zhuravlev �9�,

yt = �xt� + �N�xt�, ẏt = M�x�ẋt + ��xt�ẋt,

ÿt = M��xt�ẋt
2 + M�xt�ẍt + �M�xt�ẋt

2 + ��xt�ẍt �7�
where
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�
def
=

2

�

1 − r

1 + r
, N�x�

def
= �

x2

2
−

�2

8
if −

1

2
� � x �

1

2
�

− �x − ��2

2
+

�2

8
if

1

2
� � x �

3

2
� �

After the transformation, �3� becomes

ẍt +
�V

�x
��xt�� = − g„�xt� + �N�xt�,M�xt�ẋt + ��xt�ẋt…ẋt

+ �F�xt, ẋt� + M�xt���1„�xt� + �N�xt�…��t�

+ �2��t�� , �8�
where

F�x, ẋ� = − ẋ2 +
�V

�x
„�x�,N�x�… + 2

�V

�x
��x��M�x��x� .

The transformation and its derivatives for the elastic impact �5�
and the inelastic impact �7� make ẋt continuous. Hence, the non-
smooth transformation brings the equation of motion to a standard
form where the order one Hamiltonian is smooth and the dissipa-
tion and noise are small. The transformation changes the problem
of restricted domain to the problem of periodic boundaries and
makes averaging on each period possible.

3 Averaged Equations
In this section, we will develop rigorous methods to replace in

a limiting regime the transformed system �8� by a simpler, lower-
dimensional model of the dynamical system.

3.1 Problem Formulation. Define next the Hamiltonian or
the total energy �i.e., kinetic plus potential� as

H�x1,x2� =
x2

2

2
+ V„�x1�…, �x1,x2� � R2.

Thus H is in general a nonsymmetric potential on R2. The func-

tion H has a single critical point at o
def
= �0,0� and this critical point

is a minimum or a saddle. The state space of our problem will be

�a subset of� R2. Define the the vector field �̄H on R2 as

���̄H����x1,x2�
def
=

�H

�x2
�x1,x2�

��

�x1
�x1,x2� −

�H

�x1
�x1,x2�

��

�x2
�x1,x2�

= x2
��

�x1
�x1,x2� − V�„�x1�…

��

�x2
�x1,x2�

for all ��C1�R2� and all �x1 ,x2��R2. We use H to define a
deterministic flow on R2.

Definition 3.1. Hamiltonian flow: Set

żt�x� = �̄H„zt�x�…
z0�x� = x .

t � R,x � R2 �9�

We recast �8� as a perturbation of a two-dimensional Hamiltonian
system �9� with an isolated elliptic or saddle fixed point. We as-
sume that the system is subject to small damping and small exci-
tation. We also consider the loss of energy from impacts is small
and introduce a small parameter � such that −g�. , . �=�2��. , . �,
�=�2�. This scaling of damping and noise terms is such that the
leading order diffusion part balances the leading order drift term
in the reduced system. Specifically, we want to consider the sto-
chastic differential equation �SDE�

dẐt
� = �̄H�Ẑt

��dt + �2b̃�Ẑt
��dt + ��̃�Ẑt

��dWt,

Ẑ0
� = x � R2 �10�

˜ ˜
where the vector b and the matrix � are given by
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b̃�x1,x2�
def
= 	 0

�„�x1�,M�x1�x2…x2 + �F�x1,x2�



�̃�x1,x2�
def
= M�x1�	 0 0

�1�x1� �2

 .

In �10�, W is a R2-valued Wiener process given on some probabil-
ity space ��° ,F° ,P° �; as usual, we let E° denote the expectation
operator with respect to P°. We attach the superscript ° to denote
that this is the original probability triple.

We can understand the effects of the dissipation and noise via a
diffusive generator

�Lf��x1,x2�
def
=

1

2
��1

22�x1� + �2
2�

�2f

�x2
2 �x1,x2� + ��„x1,M�x1�x2…x2

+ �F�x1,x2��
�f

�x2
�x1,x2�

for f �C2�R2� and �x1 ,x2��R2. Thus the generator of �10� is

�̄H+�2L. Using Ito’s rule and �10�, we see that

H�Ẑt
�� = H�x� + �2�

0

t

LH�Ẑs
��ds + ��

0

t

�̃�Ẑs
��dWs

for all t�0. Thus, the dynamics of the slowly varying quantity

H�Ẑt
�� only appear on intervals of length �−2 or larger. To make

the dynamics of H�Ẑt
�� more transparent, we rescale time and look

at �Zt/�2
� ; t�0�; i.e., we look at the SDE

�11�

�i.e., we look at the slow time scale t→�2t�. Then we have that

H�Zt
�� = H�x� +�

0

t

LH�Zs
��ds +�

0

t

�̃�Zs
��dWs �12�

for all t�0. We note that the generator of Z� is

L� def
= L +

1

�2 �̄H , �13�

and a core for the domain of L� is Cb
2�R2�.

Loosely speaking, our goal is to study �12� and show that as �
tends to zero, the dynamics of the slowly varying quantity H�Zt

��
converge to a Markov process and to identify the generator of the
limiting law.

3.2 Main Results. The first extension of averaging to include
multiple fixed points with homoclinic orbits was given by Freidlin
and Wentzell �10� and was extended by Freidlin and Weber �11�
and Sowers �12� for more realistic cases via the martingale prob-
lem. We shall make use of these results to identify a reduced
stochastically averaged model for a near elastic noisy impacting
system �8�.

Fix H*�0 and define

S
def
= �x � R2:H�x� � H*� .

Let e be the first time that Zt
� leaves S, i.e.,

e
def
= inf�t � 0;Zt

� � S� .

Let C��0,	� ; S̄� be the space of continuous functions on �0,	�
with values in S̄. Since we are interested in the laws of Markov
processes, we move from the original probability space with mea-

�
sure P° to a canonical space of paths with induced measure Px.
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For each ��0, let Px
��P(C��0,	� ; S̄�) be the law of �Zt

� ; t�0�,
i.e.,

Px
��A�

def
= P��Z� � A�, A � B�C„�0,	�;S̄…� . �14�

We are, roughly, interested in the behavior of Px
� as � tends to

zero. The averaged system will in general take values in a reduced
state space which in this case is diffeomorphic to a closed
interval.

3.2.1 Reduced State Space. We are interested in the behavior
of Px

� as � tends to zero. In essence, the underpinning of the
classical stochastic averaging method is a separation of time
scales; under Px

�, the process Zt
� runs around the level sets of H

very quickly, and thus a coarse-grained description of the process
records only H�Zt

��, and the Px
�-dynamics of H�Zt

�� depends only
on H�Zt

�� itself, i.e., �H�Zt
�� ;0� t�e� is a slowly varying process,

where e is the stopping time. As � tends to zero, one should be
able to find closed dynamics for the projection of the process onto
the space of such level sets. Consider the flow �9�, we use z to

generate an equivalence relation on the original state space S̄.
Mathematically, the level sets can be understood via an equiva-
lence relation; we say that any two points x and y in R2 are
equivalent, i.e., x�y, if H�x�=H�y� and they are in the same
connected component of H−1(H�x�)=H−1(H�y�); as usual, if x

� S̄, we let �x�
def
= �y�S̄:y�x} be the equivalence class of x and

we define ��x�
def
= �x]. The above comments mean that the Px

� law
of ��Zt

�� ; t�0� should converge to that of a Markov process on the
state space of equivalence classes, namely

M
def
= S̄/ � .

Note that

M = �
i=1

N
�i � �

i=1

Nc

�ci� � �
i=1

Nb

�i,

where ci’s are the fixed points, the �i’s are closed orbits whose

union is �S̄, and each �i is the � image of a maximal open subset
of R2 which does not intersect any of the �ci�’s or �i’s, as ex-
plained by Namachchivaya and Sowers �13� and Sowers �12�.

To make our analysis easier, let us take advantage of the fact
that M looks like several intersecting lines. Let us map each �i

into an interval Ii. For each 1� i�N, let Ii
def
= H��1(�i) which

denotes all points belonging to the connected components of a
level set �S :H�x�=H� of the state space. We can then treat M as

G
def
= �i=1

N Īi,

this being interpreted as a disjoint union with the various ends of

different Īi’s identified as in �13�.

3.2.2 Reduced Process. The goal is to show that the Px
� law of

¥t
def
= H�Zt∧e

� �, t � 0

converges to that of an G-valued Markov process as � tends to
zero and to identify the generator of the limiting law. To be even
more precise, for each x�S and ��0, define the probability mea-
sure

Px
�,†�A�

def
= Px

��¥ � A�; A � B„C���0,	��,G�… . �15�

We want to understand what the asymptotics of the Px
�,†’s are as �

tends to zero, i.e., identify a limit

P��x�
† def

= lim
�→0

Px
�,†, �16�

this limit being in the Prohorov topology on P�C��0,	� ,G��.
�
To study the dynamics of the slowly varying quantity H�Zt �, we
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need a limiting generator on G which is obtained through averag-
ing. To this end, we define for each 1� i�N an elliptic operator
Li on C�Ii� as

�Li f��h�
def
= 1

2�i
2�h� f̈�h� + bi�h� ḟ�h�

for all h�Ii, where �i
2 and bi are the drift and diffusion coeffi-

cients

bi�h�
def
= �AiLH��h� =


Ci�h�

LH�x���H�x��−1dl


Ci�h�

��H�x��−1dl

�i
2�h�

def
= �Ai�dH,dH���h� =


Ci�h�

�dH,dH��x���H�x��−1dl


Ci�h�

��H�x��−1dl

�17�
with x restricted to �−1��i� and dl the length element on the level
set H�x� :C�h�= �x�S :H�x�=h�. We want to put these Li’s to-
gether to get a Markov process on G with generator LG

† with
domain DG

† . Finally, for notational convenience, when N�2, we

also define f i
def
= �f�Ii

for all 1� i�N.
We make use of the results in �11,12� to yield the limiting

domain for the noisy impacting system �8� as

DG
† =� f � C�G� � C2��i=1

N Ii�: lim
h↘H�ci�

�Li f i��h� exists ∀ i,

lim
h↗H*

�LNfN��h� = 0 and �
i=1

N

�±��̊i
2�O�f i��O� = 0� ,

�18�

where the “�” sign is taken if the coordinate h on the leg Ii is
greater than ho, the “�” sign is taken otherwise. Finally, the last
expression in �18� represents the gluing condition at the vertex O
and the gluing coefficients are

�̊2�h�
def
= 

Ci�h�

�dH,dH��x���H�x��−1dl . �19�

Then for f �DG
† , the generator is

�20�

for all h� Īi.

4 Application: Impacting Vertical Pendulum
In this section, we will apply the main results to a vertical

pendulum constrained between two walls with inelastic impact.
We consider a pendulum that undergoes small amplitude vibra-
tions where the stiffness and damping can be modeled as linear.
Therefore, the nonlinearity comes primarily from the impacts at
the constraints. This simplified application has practical relevance
because many “real-world” models fit into this category. After
getting a SDE for the model, analytical and numerical approaches
are applied to get probability density functions and mean exit
times.

The Lagrangian of a free pendulum under a prescribed horizon-

tal motion z�t� is given by

Journal of Applied Mechanics
L =
m

2
�l2�̇t

2 + żt
2� + mlżt�̇t cos �t ± mgl cos �t,

where � is measured counter-clockwise from negative and posi-
tive vertical axes for the hanging and inverted pendulum, respec-
tively, the � �or �� sign is used for the hanging �or inverted�
pendulum, and g is the gravitational acceleration. The equations
of motion for the impacting pendulum are

ml2�̈t + d�̇t ± mgl sin �t = − mlz̈t cos �t, ��t� � �*

�̇t+
= − r�̇t−

, ��t� = �*, �21�

where the second equation is called the impact law, d is the effec-
tive angular viscous damping coefficient, and the constraints are
placed symmetrically at �= ±�*. The coefficient of restitution, 0
�r�1, depends on colliding material and surface properties and
t� represents the time prior and after the instant t* of impact,
which is determined by the condition �t* = ±�*. After appropriate
scaling, one can get the linearized model under stochastic excita-
tions

ÿt + 2�ẏt − �2yt = �1��t�yt + �2��t� �22�

with the same impact law �4�.

4.1 Analytical Approach. After applying the inelastic trans-
formation �7�, one can get a time-rescaled SDE �11� with the
Hamiltonian, dissipation, and noise coefficients given by

H�x1,x2� = 1
2x2

2 − 1
2�22�x1�, �„�x1�,M�x1�x2… = − 2� ,

F�x1,x2� = − 1
2�22�x1� − 1

8�2�2 − x2
2.

Here, we assumed small dissipation, damping, and excitation. The
Hamiltonian system has multiple fixed points, one of which is

�

Fig. 1 Phase portrait and graph of system
connected to itself by a homoclinic orbit, and H�Zt � no longer
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converges to a diffusive Markov process. Here the reduced state
space is a graph M=�i=0

4 �ci���i=1
4 �i �Fig. 1�, where

�1
def
= � x�M

H�x��0

x2�0

�x�, �2
def
= � x�M

H�x��0

x�c2

x1�0

�x� ,

�3
def
= � x�M

H�x��0

x2�0

�x�, �4
def
= � x�M

H�x��0

x�c4

x1�0

�x� ,

and ci’s are the critical points �including points at infinity�. Then
the limiting process on the graph is defined by the generator �20�
on the four segments of the graph, where h is only a local coor-
dinate in each edge and it can take the same value for different
trajectories. In evaluating the drift and diffusion coefficients for
each segment we make use of �11�. We change the time integral to
the path integral with respect to the fast variable Zt

� while averag-
ing over one period of the fast motion of Zt

�. This process effec-
tively removes the fast variable Zt

� and yields on each segment Ii
of the graph the following averaged drift and diffusion coeffi-
cients:

bi�h� =
1

Ti�h��
0

Ti�h�

�− 2�Q�x1,h� + �F„x1,�Q�x1,h�…�Q�x1,h�

+ R�x1��dt =
1

Ti�h�
�Bi�h� + Ci�h��

Bi�h� = �Bi
1�h� + �Bi

2�h�

Bi
1�h� =�

x1i
−

x1i
+

− 2�Q�x1,h�dx1, Bi
2�h� =�

x1i
−

x1i
+

F�x1,�Q�x1,h��dx1

Ci�h� =�
x1i

−

x1i
+

R�x1�
�Q�x1,h�

dx1, Ti�h� =�
0

T

dt =�
x1i

−

x1i
+

dx1

�Q�x1,h�

�i
2�h� =

1

Ti�h��
0

Ti�h�

2R�x1�Q�x1,h�dt =
�̊i

2�h�
Ti�h�

�̊i
2�h� =�

x1i
−

x1i
+

2R�x1��Q�x1,h�dx1, R�x1� =
1

2
��1

22�x1� + �2
2�

Q�x1,h� = 2�h − P�x1��, P�x1� = − 1
2�22�x1�

F„x1,�Q�x1,h�… = − 1
2�22�x1� − 1

8�2�2 − Q�x1,h� ,

where x1i
�±� def

= x1i
(�)(h) are the points where the periodic orbit meets

the boundary. The domain of the averaged generator �20� is given
by �18�, where f i��O�=limh→H�O�f i��h� for �h , i�� Ii and the �

sign denotes whether the coordinate h on the segment Ii is greater
than or less than H�O�. In �18�, the gluing condition

�
i=1

4

�±��̊i
2�O�f i��O� = 0 �23�
for the vertex O roughly means the following. Define
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�
def
= �

i=1

n

�̊i
2�O� .

If the limiting process starts in leg I1 of the graph G, it evolves
according to �LG

† f1��h� for h�I1. Upon reaching the vertex O,
the limiting process flips an n-sided coin to decide where to go
next. It will go back to leg 1 with likelihood �̊1

2�O� /�, to leg 2
with likelihood �̊2

2�O� /�, and to leg n with likelihood �̊n
2�O� /�.

Once it is in any of these legs, it will evolve according to
�LG

† f i��h� with �1 and b1 replaced by the appropriate �i and bi.
When it hits the vertex again, the coin-flipping procedure is re-
peated �with a new coin�.

Making use of the relation d�̊i
2�h� /dh=2Ci�h�, the generator

�20� reduces to

Li
†f i�h� =

1

Ti�h�
�Bi�h�f i��h�� +

1

2

1

Ti�h�
��̊i

2�h�f i��h���. �24�

For different values of h, we have different path integrals �one or
two impacts� and thus different drift b�h� and diffusion coeffi-
cients ��h�. They are evaluated as follows:

�1� H�0: The integrals are calculated along the paths which
correspond to the “two impacts.” Due to the Z2 symmetry of the
Hamiltonian we have two such segments and these are denoted by
i=1,3 and the coefficients are

Ti�h� = 2�
0

�/2
dx1

�2h + �2x1
2

=
2

�
sinh−1 ��2�2

8h

Bi
1�h� = − 4�

0

�/2

�2h + �2x1
2dx1 = −

�

2
��2�2 + 8h

−
4h

�
sinh−1 ��2�2

8h

Bi
2�h� = 2�

0

�/2 	− 2h −
3

2
�2x1

2 −
1

8
�2�2
dx1 = −

1

4
�2�3 − 2h�

Ci�h� =�
0

�/2
�1

2x1
2 + �2

2

�2h + �2x1
2
dx1 =

1

�
��1

2	�

4
��2

4
+

2h

�2

−
h

�2 sinh−1 ��2�2

8h

 + �2

2 sinh−1 ��2�2

8h
�

�i
2�h� =

�̊i
2�h�

Ti�h�
=

2

Ti�h��
0

�/2

��1
2x1

2 + �2
2��2h + �2x1

2dx1

�̊i
2�h� = 2���1

2��

8
��2

4
+

2h

�2	�2

4
+

h

�2

−

h2

2�4 sinh−1 ��2�2

8h
� + �2

2��

4
��2

4
+

2h

�2

+
h

�2 sinh−1 ��2�2

8h
�� .

Here Ti�h� is the period of the oscillations.
�2� H�0: In this case, the integrals are calculated along the

paths which correspond to the “one impact” and, as before, the
system has two symmetric segments denoted by i=2,4 with

Ti�h� = 2��/2
dx1

�− 2�h� + �2x2
=

2

�
cosh−1 ��2�2

8�h�
�2�h�/� 1
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Bi
1�h� = − 4�

�2�h�/�

�/2

�− 2�h� + �2x1
2dx1 = −

�

2
��2�2 − 8�h�

+
4�h�
�

cosh−1 ��2�2

8�h�

Bi
2�h� = 2�

�2�h�/�

�/2 	2�h� −
3

2
�2x1

2 −
1

8
�2�2
dx1 = −

1

4
�2�3 + 2�h��

−
2�h��2�h�

�
+

1

4
�2�h���2

Ci�h� =�
�2�h�/�

�/2
�1

2x1
2 + �2

2

�− 2�h� + �2x1
2
dx1 =

1

�
��1

2	�

4
��2

4
−

2�h�
�2

+
�h�
�2 cosh−1 ��2�2

8�h�

 + �2

2 cosh−1 ��2�2

8�h� �
�i

2�h� =
�̊i

2�h�
Ti�h�

=
2

Ti�h���2�h�/�

�/2

��1
2x1

2 + �2
2��− 2�h� + �2x1

2dx1

�̊i
2�h� = 2���1

2��

8
��2

4
−

2�h�
�2 	�2

4
−

�h�
�2


−
�h�2

2�4 cosh−1 ��2�2

8�h� � + �2
2��

4
��2

4
−

2�h�
�2

−
�h�
�2 cosh−1 ��2�2

8�h� �� .

Here, we considered the interval of �−� /2 ,� /2�, where �x1�
=x1. Due to the periodicity of the transformed system, we can get
the same result for the other intervals using a change of variable.

The ht process can move from one region of closed trajectories
to another. The aim of this paper is to consider the results pertain-
ing to the ends of the segments where there is a homoclinic orbit
connecting a saddle point and to examine the fate of the trajecto-
ries which leave the region where they originated. We are also
interested in the qualitative changes in the probability densities p�
which are solutions of the Fokker-Planck equation �FPE� associ-
ated with the generator �20�.

4.1.1 Mean First Passage Time. The scale and speed measures
on the edges �i=2,4� connecting the vertex are given by

Si�h�
def
= �

zi

h

si���d�, and Mi�h�
def
= �

zi

h

mi���d� ,

where

si��� =
1

�̊i
2���

exp	− 2�
zi

�
Bi���
�̊i

2���
d�
 ,

mi��� = Ti��� exp	2�
zi

�
Bi���
�̊i

2���
d�
 ,

and h is an interior point for each edge Ii. For i=1,3, the lower
limits of integration are h and the upper ones are z1 ,z3, respec-
tively. In order to examine the boundary behavior, we consider
roughly the time to reach the left or right boundary starting from
an interior point hi� Ii and the time to reach an interior point h
starting from the boundary zi or O. A thorough discussion on
boundary classification is given in �14�. The ends of the edges Ii
are fixed points of elliptic or saddle type. The Feller classification
defines whether the end of an edge is accessible from the inside

and whether the inside is accessible from the end of an edge. We
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find that the boundaries b2 and b4 are entrance boundaries while
the boundaries b1 and b3 are natural boundaries. Since D��h�
=T�h�, where D�h� is the area bounded by E�h�, it is clear that
Si�h� and Mi�h� are finite as h→H�O�. Thus, according to the
Feller classification, vertex O is accessible and the gluing condi-
tion is needed to solve the mean exit time problem.

Suppose that at time t=0, the state of the system corresponds to
some point defined by H�0�=h within D which is the domain of
attraction with boundary �D. Let zi be the points on the edge of
the graph corresponding to the boundary �D. We are interested in

the time �c
def
= min��i} where �i=inf�t�0;H�t�=zi� is the hitting

time of the averaged process to the level zi. Define the mean time
to reach either z1, z2, z3, or z4 by the function

u�h�
def
= E��c:H(0)�h]. Since the averaged process is Markovian

with the generator �20� it follows from the classical theory of
Markov processes

Li
†ui�h� = − 1, �h,i� � Ii �25�

with the boundary and gluing conditions given by

ui�zi� = 0 ∀ i, and �
i=1

4

�±��i
2�O�ui��O� = 0.

The generator �20� is defined for continuous functions ui�h� ,h
� Ii. Hence, at the vertex O we have u1�O�=u2�O�=u3�O�
=u4�O�. Thus, we have eight boundary conditions for determining
uniquely the mean first passage time. Imposing the boundary con-
ditions at h=z1, z2, z3, and z4 the solution of �25� is given by

ui�h� = − 2�
h

zi 	�
�

zi

mi���d�
si���d� + �i�Si�zi� − Si�h��, i = 1,3

ui�h� = − 2�
zi

h 	�
zi

�

mi���d�
si���d� + �i�Si�h� − Si�zi��,

i = 2,4,

where h is an interior point for each edge Ii.
From the symmetry of the system, the gluing conditions sim-

plify to

− u1��O� + u2��O� − u3��O� + u4��O� = 0. �26�

Applying the continuity and gluing conditions at the vertex O, the
constants �1, �2, �3, and �4 can be determined for various values
of the system parameters � ,� ,�1 ,�2. In this work, the numerical
calculations were performed with the aid of Mathematica 5.0.
Figure 2 shows the variation of the mean exit time with H for
z1=0.3, z2=−0.15, z3=0.4, z4=−0.2, �=1, �=1, �1=1, and
�2=1.

4.1.2 Fokker-Planck Equation (FPE). In this section, we shall
examine the stationary behavior of the Fokker-Planck equation
�FPE� associated with the generator �24�. In order to obtain the

Fig. 2 Variation of the mean exit time, t, with H
FPE, let
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E�h�
def
= ��x,y� � R2:H�x,y� = h� .

The inner product with respect to the Lebesgue measure is given
by the usual definition

�f�x1,x2�,g�x1,x2��R2
def
= � �

D�h�

f�x1,x2�g�x1,x2�dx1dx2,

where D�h� is the area bounded by E�h�. Making use of the rela-
tion D��h�=T�h� �where the prime denotes differentiation with
respect to the energy level, h�, the appropriate inner product in the
local coordinate h is given by

�f�h�,g�h��H
def
= �

h

f�h�g�h�T�h�dh . �27�

Given the generator L† of the process (¥�t� ,P��x�
† ) on the graph

defined in �24�, the associated adjoint operator is obtained using
the inner product �27� as

Li
†*gi�h� =

1

Ti�h�
	− �Bi�h�gi�h��� +

1

2
��̊i

2�h�gi��h���
,

for all h � Īi,

with the boundary conditions

�
i=1

4

�±��1

2
�̊i

2�h�f i��h�gi�h��
0

bi

,

�28�

�
i=1

4

�±���Bi�h�gi�h� −
1

2
�̊i

2�h�gi��h�� f i�h��
0

bi

,

and once again the “�” sign is taken if the coordinate h on the
segment Ii is greater than H�O� and the “�” sign is taken
otherwise.

We shall consider the boundary conditions at the exterior ver-
tices and the interior vertex O separately. Consider the first
boundary condition in �28�. At the exterior vertices b1 and b3, it is
obvious that the probability densities g1�h� and g3�h� are equal to
zero. At the exterior vertices b2 and b4, from an asymptotic analy-
sis, it can be shown that limh↘bi

f i��h� is finite �see Lemma 5.3 of
�15��, and limh↘bi

�̊i
2�h�=0. Hence, the first boundary condition in

the above expression vanishes at the exterior vertices b1, b2, b3,
and b4. Further, at the interior vertex O, the probability density is
continuous, i.e., g1�O�=g2�O�=g3�O�=g4�O�=g�O�. Thus, the
first boundary condition reduces to the expression

�±��
i=1

4

�̊i
2�O�f i��O�g�O� . �29�

In view of the gluing conditions �23�, the above expression is
identically equal to zero. Now, we shall consider the second
boundary condition in �28�. Since the exterior vertices, bi are the
entrance boundaries, the probability flux at these vertices is zero,
i.e.,

�Bi�bi�gi�bi� −
1

2
�̊i

2�bi�gi��bi�� = 0, i = 1,2,3,4. �30�

Furthermore, from �18�, the function f i�H� is continuous at the
interior vertex O, i.e., f1�O�= f2�O�= f3�O�= f4�O�= f�O�. Thus,
the second boundary condition reduces to

�
i=1

4

�±��Bi�O�gi�O� −
1

2
�̊i

2�O�gi��O�� def
= �

i=1

4

�±�Ji�O� = 0,

�31�

where Ji�O� denotes the probability flux in each segment Ii of the
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vertex O. Equation �31� reflects the fact that the probability flux is
conserved. Finally, the probability density is normalized to unity

�
0

	

g1�h�dh +�
b2

0

g2�h�dh +�
0

	

g3�h�dh +�
b4

0

g4�h�dh = 1.

�32�
The stationary probability density is the solution of the FPE:

Li
†*gi = 0 �33�

subjected to the conditions given in �31� and �32�. The solution of
�33� is obtained as

gi�h� = exp	2�
Hi0

h
Bi���
�̊i

2���
d�


��− 2Gi
st�

Hi0

h
exp�− 2�

Hi0

�

�Bi���/�̊i
2����d��

�̊i
2���

d� + Di� ,

where Gi
st and Di are to be determined from the conditions men-

tioned above. Since the flux is zero at the exterior vertices indi-
cated by bi, it can be shown that the Gi

st are identically zero. Now,
from the symmetry of the system, the flux condition �31� reduces
to

− g1��O� + g2��O� − g3��O� + g4��O� = 0, �34�

which is automatically satisfied due to the fact

gi��h� =
2Bi�h�
�̊i

2�h�
gi�h� .

Upon applying the continuity and the flux conditions at the vertex
O, we obtain

D1 = D3, D2 = D4, D1 = D2 exp	�
b2

H�O�
2B2���
�̊2

2���
d�
 .

�35�
Now, we make use of the normalization condition to obtain the
constants Di from

D2
−1 = 2�

b2

H�O�

exp	�
b2

h
2B2���
�̊2

2���
d�
dh

+ 2 exp	�
b2

H�O�
2B2���
�̊2

2���
d�


��
H�O�

	

exp	�
H�O�

h
2B1���
�̊1

2���
d�
dh . �36�

The expressions in �36� were evaluated numerically for various
values of the system parameters �, �, �1, and �2 using Math-
ematica 5.0. Figure 3 shows the stationary density with respect to
various intensities of additive noise, �2, and different values of
the coefficient of restitution, r, for �=1, �1=0.

4.2 Numerical Approach. Here, we use a Monte Carlo ap-
proach to simulate the SDE. The starting point is the linearized
model �22� with the impact law �4�. In the first-order form, we can
rewrite it as

ẋ1�t� = x2�t�

ẋ2�t� = − 2�x2�t� + �2x1�t� + �1��t�x1�t� + �2��t� . �37�
It is usual to write the above equations in differential forms with
the appropriate scaling
dx1�t� = x2�t�dt
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dx2�t� = �2x1�t�dt − 2�2�x2�t�dt + ���1dWt
1x1�t� + �2dWt

2� ,

�38�
which are in the same form as �10�. We apply the stochastic Euler
scheme �Euler-Maruyama method �16�� using the same parameter
values as in Sec. 4.1.2. The following graphs are obtained from
the simulations using Matlab 6.5 through 107 iterations of 0.01
time steps with the scale parameter �=0.1. Care must be taken
when the value of coefficient of restitution r is chosen since the
averaged system is only valid for small perturbations. In this
simulation �1−r� is taken to be either 0.01 or 0.02, which guar-
antees the smallness assumption of � �see Eq. �7��. Figure 4 shows
the probability density plot for x1 and x2 for two different values

Fig. 3 Stationary density g„h…: „a… effect of additive noise
„r=1…, „b… effect of r „�2=2…
Fig. 4 Stationary density p„u ,v…: „a… �2=1, „b… �2=2
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of the additive noise intensity �2. In order to compare the simu-
lations with the analytical results of the previous section, we
project the probability density plot for the Hamiltonian H�u ,v�
= 1

2x2
2− 1

2�x1
2 and it is shown in Fig. 5. From the numerical values

presented in Figs. 3 and 5, it is clear that the approximate results
are close to the numerical simulations.

5 Conclusion
In this paper we have shown the dynamics of a general single-

degree-of-freedom system with nonsmooth nonlinearities under
random excitations. Through stochastic averaging we developed
rigorous methods to replace the original nonsmooth system by a
simpler, lower-dimensional model and obtained the analytical so-
lutions for the reduced system. First, we transformed the system to
standard form where the order one Hamiltonian is smooth. Under
the smallness assumption of perturbation, we were able to achieve
a model reduction and the reduced Markov process takes its val-
ues on a graph with gluing conditions at the vertex of the graph.
As an application, we studied the vertical pendulum constrained
between two walls under additive and multiplicative noises and
found the analytical solutions for the mean exit times and prob-
ability density functions. To our knowledge, such analytical re-
sults have not been found by others. Finally, these results are
validated numerically using Monte Carlo simulations. The theo-
retical values are very close to those obtained numerically for the
coefficient of restitution r very close to 1. The concept of
P-bifurcation �phenomenological� is associated with qualitative
changes of the probability density g�h�. The reader is referred to
Arnold et al. �17� for details. We also found that bifurcation does
not occur under additive noise in these systems, similar to a result
that was also obtained by Namachchivaya et al. �18�.
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Elastic Fields due to Eigenstrains
in a Half-Space
Engineering components inevitably encounter various eigenstrains, such as thermal ex-
pansion strains, residual strains, and plastic strains. In this paper, a set of formulas for
the analytical solutions to cases of uniform eigenstrains in a cuboidal region-influence
coefficients, is presented in terms of derivatives of four key integrals. The linear elastic
field caused by arbitrarily distributed eigenstrains in a half-space is thus evaluated by the
discrete correlation and fast Fourier transform algorithm, along with the discrete con-
volution and fast Fourier transform algorithm. By taking advantage of both the convo-
lution and correlation characteristics of the problem, the formulas of influence coeffi-
cients and the numerical algorithms are expected to enable efficient and accurate
numerical analyses for problems having nonuniform distribution of eigenstrains and for
contact problems. �DOI: 10.1115/1.2047598�
1 Introduction
Driven by modern design concepts such as compactness, reli-

ability, and power density, components encounter severe condi-
tions with significant thermal expansion, and residual and plastic
strains. These strains are generically named as eigenstrains. The
effects of eigenstrains on elastic field or inclusion problems with
regard to a half-space have been investigated for decades �1–6�
and summarized in the field of micromechanics �6�. Chiu �3,4�
developed solutions for isotropic and elastic infinite spaces and
half-spaces, respectively, due to eigenstrains in a cuboid �see also
Chapter 2 in �6��. The half-space solution �4� is the summation of
two infinite space solutions �3� with two mirror-image eigen-
strains, respectively, and the Boussinesq solution for the half-
space subject to pressure. Recent studies on inclusion problems
can be found in �7–10�, among many others. Yoffe �11� studied the
indentation of brittle materials and used the Blister field for sur-
face inclusions. Sainsot et al. �12� and Jacq et al. �13� utilized
Chiu’s theory and developed a semianalytical elastic-plastic con-
tact model to study the rolling contact fatigue of dented surfaces.

However, Chiu’s superposition method is an indirect way to
find the elastic field in a half-space with eigenstrains. In this pa-
per, a direct way is adopted and the Mindlin and Cheng’s half-
space results �2� or more general results reported by Yu and San-
day �14� for joint half-spaces are utilized. Cases of uniform
eigenstrains in a cuboidal region are solved to derive influence
coefficients. A set of formulas for influence coefficients in terms
of derivatives of four key integrals is presented and is used to
express the elastic field caused by arbitrary distribution of eigen-
strains in a half-space. In numerical analyses for the elastic field
due to plastic strains, Sainsot et al. �12� and Jacq et al. �13� used
two-dimensional fast Fourier transform �FFT� to reduce computa-
tional burden. It is desirable to further improve numerical effi-
ciency, particularly for thermo-elasto-plastic contact analyses
where elastic field has to be repetitively evaluated during the it-
eration process to solve the contact problem �15�. Based on the
nature of the expressions of the elastic field in general cases, two
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unique numerical schemes—the discrete correlation and fast Fou-
rier transform �DCR-FFT� �16� and the discrete convolution and
fast Fourier transform �DC-FFT� �16�, are applied with three-
dimensional FFT. These algorithms take advantage of the convo-
lution and correlation characteristics. The straightforward formu-
lae and the numerical algorithms are expected to reduce the
difficulties of code development and enable fast and accurate
analyses for inclusion problems and contact problems.

2 Theory
An isotropic and elastic half-space with a coordinate system

Ox1x2x3 �Fig. 1� is subject to eigenstrains �eij� distributed in an
arbitrary way inside a volumetric region ���. This region may
have irregular shape. In the following derivation, the sign of eij
follows conventional rules and a comma in the subscript means
derivative, e.g., Fi,j =�Fi /�xj. Note that symbols in boldface are
vectors. Vector x denotes any observation or response point, while
x� denotes any source or excitation point. The elastic field due to
the eigenstrains can be expressed in terms of Galerkin vectors, F
�17�:

1� Displacements.

2�ui�x� = 2�1 − ��Fi,j j − Fk,ki �1�
2� Stresses outside �. According to the Hooke’s law, one can

obtain

�ij�x� = ��ijuk,k + ��ui,j + uj,i� �2a�

or �ij�x� = �Fk,kmm�ij − Fk,kij + �1 − ���Fi,kkj + Fj,kki�
�2b�

3� Stresses inside �. Stresses inside � are evaluated by Eq. �2�
minus stresses �ij

* determined from eij by using the Hooke’s
law, �ij

* �x�=2�eij +�ekk�ij. Thus,

�ij�x� = �Fk,kmm�ij − Fk,kij + �1 − ���Fi,kkj + Fj,kki� − 2�eij

− �ekk�ij �3�

If it is not specially indicated, the summation convention is al-
ways applied for repeating indices. Note that Eqs. �1�–�3� involves
only high-order derivatives of the Galerkin vectors. The Galerkin

vectors are written in a form of volumetric integral as �17�
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F�x� = − C�
�

�2�ekkgc − ejkg jk�dx� �4�

where C=−� / �4��1−���, gc is a basic Galerkin vector for a cen-
ter of dilatation in a half-space, and g jk are basic Galerkin vectors
for a double force in the k direction �j=k� or a double force in the
k direction with moment in the direction normal to the Oxjxk plane
�j�k� in a half-space. The expressions of the basic Galerkin vec-
tors for a center of dilatation, double forces and double forces
with moment can be found in Mindlin and Cheng �2� or Yu and
Sanday �14�, where expressions for other types of nuclei of strain
are listed as well.

2.1 Infinite Space. Although problems of an infinite space
subject to eigenstrains are the simplest, formulae are shown here
to illustrate the method with the Galerkin vectors. Equations
�1�–�4� are also valid for infinite spaces except that the Galerkin
vectors in this case are listed as follows:

gij = R,i
I x̂ j �5a�

gc = ln�RI + �x3 − x3���x̂3 �5b�

Fi = C�
�

�eijR,j
I − 2�ekk�i3 ln�RI + �x3 − x3����dx� �5c�

Fi,kk = 2C�
�

eim�,m
I dx�

�since R,kk
I = 2�I and �ln�RI + �x3 − x3����,kk = 0� �5d�

Fk,ki = C�
�

�ekmR,kmi
I − 2�ekk�,i

I �dx� �5e�

where x̂ j is the unit vector in the xj direction, RI

=��x1−x1��
2+ �x2−x2��

2+ �x3−x3��
2, and �I=1/RI. Superscript “I”

denotes the infinite space. When the eigenstrains are plastic
strains, it is known that the trace of the plastic strains is zero, i.e.,
ekk=0. In other words, the plastic strains are only one special type
of the eigenstrains considered in this paper. In general, the terms
related to the trace of the eigenstrains in Eqs. �5c� and �5e� should
be kept. Thus, the elastic field in an infinite space is obtained by
substituting Eqs. �5� into Eqs. �1�–�3�,

2�ui/C = 4�1 − ���
�

eim�,m
I dx� −�

�

�ekmR,kmi
I − 2�ekk�,i

I �dx�

Fig. 1 A half-space subject to eigenstrains, eij, inside a do-
main �. x� and x are source points and observation points,
respectively
�6a�
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�ij/C = 2��
�

emk�,km
I dx��ij −�

�

�ekmR,kmij
I − 2�ekk�,ij

I �dx�

+ 2�1 − ���
�

�eim�,mj
I + ejm�,mi

I �dx� x � � �6b�

�ij/C = 8���1 − ��eij + �ekk�ij� + 2��
�

emk�,km
I dx��ij

−�
�

�ekmR,kmij
I − 2�ekk�,ij

I �dx� + 2�1 − ���
�

�eim�,mj
I

+ ejm�,mi
I �dx� x � � �6c�

The first term in Eq. �6c� consists of two parts: �1� �ij
* expressed in

Eq. �3� and �2� an extra part originated from ��ijuk,k of Eq. �2a�,

��ijC�
�

2�ekk�,j j
I dx�/�2�� = − 8�C�ijekk�

2/�1 − 2�� x � �

with the following identity, �see Eq. �12.6� in �6��

	�
�

eij�
Idx�


,kk

= �− 4�eij�x� x � �

0 x � �
�

Similarly, if the strain is a dilatation strain, i.e., �ije0, the second
term in Eq. �6c� will be −8��e0�ij. A one-dimensional convolu-
tion has the form of −	

	 e�xi��G�xi−xi��dxi�. Eq. �6� consists of
volumetric integrals, which are indeed three-dimensional convo-
lutions.

2.2 Half-Space. Galerkin vectors due to unit single forces at
x� in a half-space are written as �2,14�,

g1 = �RI + R − 2x3�
2� − 4�1 − ��D


0

2x3�R,1 + 2D�x1 − x1���
� �7a�

g2 = �0

RI + R − 2x3�
2� − 4�1 − ��D


2x3�R,2 + 2D�x2 − x2���
� �7b�

g3 = �RI + �3 − 4��R − 2x3�x3� − 4Dx3�� − 4�1 − ��D
�x̂3 �7c�

where D=1−2�, R=��x1−x1��
2+ �x2−x2��

2+ �x3+x3��
2, �=ln�R

+ �x3+x3���, �=1/R, and 
=R− �x3+x3���. Note that �,3=� and

,3=−�. Galerkin vectors due to unit double forces, double forces
with moment, and a center of dilatation are,

gij = −
�g j

�xi�
�8a�

gc = �ln�RI + �x3 − x3��� + �1 − 4��� + 2x3��x̂3 �8b�

Note that the derivative in Eq. �8a� is with respect to the excita-
tion point. According to Eq. �4�, the Galerkin vectors due to the
eigenstrains in the region, �, could be written as an integral with
respect to x�,

Fi�x� =�
�

f i�x,x��dx� �9�

with f=C�ei1�gi1�1 ,ei2�gi2�2 ,eij�gij�3−2�eii�gc�3�T. Equations �1�
and �2� show that only the derivatives of Galerkin vectors will be
used in the elastic field. The sequence of integration and differen-
tiation can be interchanged, thus the derivatives of f i are shown in

the following equations,

Transactions of the ASME



f i,j j/C = 2e1i��,1
I + �,1� + 2e2i��,2

I + �,2� + 2e3i��,3
I − �,3�

�i = 1 or 2� �10a�

f3,j j/C = 2e13��,1
I + 4x3�,13 − 4R,133 + 3�,1� + 2e23��,2

I + 4x3�,23

− 4R,233 + 3�,2� + 8e12�− x3�,12 + R,123 + D�,12�

+ 4e11�− x3�,11 + R,113 + D�,11� + 4e22�− x3�,22 + R,223

+ D�,22� + 2e33��,3
I − 2x3�,33 + 2R,333 − �5 − 4���,3�

− 8�eii�,3 �10b�

fm,j jm/C = 4e13��,13
I − 2R,1333 + 2x3�,133 + 3�,13�

+ 4e23��,23
I − 2R,2333 + 2x3�,233 + 3�,23�

+ 4e12��,12
I + 2R,1233 − 2x3�,123 + �1 − 4���,12�

+ 2e11��,11
I + 2R,1133 − 2x3�,113 + �1 − 4���,11�

+ 2e22��,22
I + 2R,2233 − 2x3�,223 + �1 − 4���,22�

+ 2e33��,33
I + 2R,3333 − 2x3�,333 − �7 − 4���,33�

− 8�eii�,33 �10c�

f j,j/C = 2e13�R,13
I − �3 − 4��R,13 + 4�1 − ��x3�,1 − 2x3R,133

+ 2x3
2�,13� + 2e23�R,23

I − �3 − 4��R,23 + 4�1 − ��x3�,2

− 2x3R,233 + 2x3
2�,23� + 2e12�R,12

I + �1 − 2D2�R,12

+ 4�1 − ��D�x3 + x3���,12 + 2x3R,123 − 2x3
2�,12�

+ e11�R,11
I + �1 − 2D2�R,11 + 4�1 − ��D�x3 + x3���,11

+ 2x3R,113 − 2x3
2�,11� + e22�R,22

I + �1 − 2D2�R,22

+ 4�1 − ��D�x3 + x3���,22 + 2x3R,223 − 2x3
2�,22�

+ e33�R,33
I + �3 − 4��R,33 + 8�� − 1�x3�,3 − 4�1 − ��D�

+ 2x3R,333 − 2x3
2�,33� − 2�eii��I + �3 − 4��� + 2x3�,3�

�10d�

The contribution of e33 in Eq. �10b� and Eq. �10d� could
be equally written as 2e33��,3

I −2x3�,33+2R,333+2D�,33

− �7−8���,3� and e33�R,33
I + �1−2D2�R,22+4�1−��D�x3+x3���,22

+8��−1�x3�,3+2x3R,333−2x3
2�,33�, respectively. The derivatives

of Fi in Eq. �9� are complicated and consist of two types of volu-
metric integrals: �a� Terms with superscript I are identical to those
for an infinite space and are 3D convolutions. This type of integral
could be generically written as �16�

�
�

e�x��G�x − x��dx� �11�

where G is a generic function. �b� A one-dimensional correlation
�16� has a form of −	

	 e�xi��G�xi+xi��dxi�. x3 in Eq. �10� is an
integral constant of the volumetric integrals. Terms without super-
script I, which are modifying parts, are indeed convolutions in the
x1 and x2 directions and correlation in the x3 direction. This type
of integral could be generically written as

�� �
�

e�x��G�x1 − x1�,x2 − x2�,x3 + x3��dx1�dx2�dx3� �12�

Given the convolution and correlation nature of individual terms
in the derivatives of Eq. �9�, the elastic field in a half-space is the
summation of convolution and correlation terms. In contact me-
chanics research, the fast Fourier transform �FFT� is applied to
improve the numerical evaluation process for convolution terms
�18–23�. In this paper, FFT is applied to efficiently compute not
only convolution terms but also correlation terms. FFT, once

again, is a powerful numerical tool in contact mechanics studies.

Journal of Applied Mechanics
The elastic field of a half-space could be obtained by Eqs. �1�–�3�
with the similar procedure used for the infinite space problem
described in the previous section.

2.3 Influence Coefficients and Integrals. In the formula for
the elastic field, volumetric integrals consist of convolution and
correlation. As pointed out by Chiu �3�, one can subdivide the
region � into a number of small cuboidal elements �see Fig. 2�,
each of which has a uniform distribution of eigenstrains. It should
be pointed out that beside the region � �source�, one should be
aware of the other region where the elastic field is of interest.
Generally the stress field inside and around � is necessary for a
model. Since the plastic zone may reach the surface, the surface
may be part of the region of interest. In order to do so, a rectan-
gular domain called target domain ��t� is defined, which encloses
both � and the region, �i, where the elastic field is of interest.
When the region �i is smaller than �, Sainsot et al. �12� pointed
out a way to reduce the computation burden. The eigenstrains
outside of � but inside of �t are set as zero �zero padding for a
series �16,23��. �t has the size of L1�L2�L3 and is divided into
cuboidal elements �E� of 21�22�23. The total number of
elements is N1�N2�N3 with Nj =Lj / �2 j�. Ni is usually the
power of 2. Each cuboidal element is labeled by three indices for
three directions increasing along the axes. Discrete values of the
elastic field can be evaluated theoretically at any location inside
any element. These specific locations are called observation
points. Here, element centers, or element upper-surface centers
�with a normal of −x̂3�, are recommended as observation points
identified as element-centered ��=1� or face-centered ��=0�, re-
spectively. It is seen that the latter choice enables one to evaluate
the surface elastic field. All discrete values are expressed by the
name of the quantities with the element label as the subscript. The
observation point with the smallest coordinates �o1 ,o2 ,o3� is
marked with subscript x0,0,0, where o3 could be zero. All other
observation points, xl,m,n, have coordinates of �o1+2l1 ,o2
+2m2 ,o3+2n3�. Elements El,m,n have intervals:

x1 � �o1 + 2l1 − 1,o1 + 2l1 + 1� �13a�

x2 � �o2 + 2m2 − 2,o2 + 2m2 + 2� �13b�

x3 � �o3 + 2n3 − �3,o3 + 2n3 + 23 − �3� �13c�

where � is determined by the type of observation points: Element-
centered ��=1� and face-centered ��=0�. Integrals labeled by �11�

Fig. 2 Target domain, elements, grid points, and labels
and �12� could be approximated by
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�
l=1

N1

�
m=1

N2

�
n=1

N3

el,m,n�
El,m,n

G�xi − x1�,xj − x2�,xk � x3��dx�

= �
l=1

N1

�
m=1

N2

�
n=1

N3

el,m,n�
o3+�2n−��3

o3+�2n−�+2�3�
o2+�2m−1�2

o2+�2m+1�2

��
o1+�2l−1�1

o1+�2l+1�1

G�o1 + 2i1 − x1�,o2 + 2j2 − x2�,o3

+ 2k3 � x3��dx� �14�

One may use variable substitution of

�1 = x1 − x1�

�2 = x2 − x2�

�15�
and �3 = x3 − x3� for Eq. �11� �convolution�

or �3 = x3 + x3� for Eq. �12� �correlation� ,

and change the integral limits so that the small value is the lower
limit and the large value is the upper limit. Eq. �14� is rewritten as,

�
l=1

N1

�
m=1

N2

�
n=1

N3

el,m,n�
�2k−2n+�−2�3

�2k−2n+��3 �
�2j−2m−1�2

�2j−2m+1�2

��
�2i−2l−1�1

�2i−2l+1�1

G��1,�2,�3�d� �convolution� �16a�

and

�
l=1

N1

�
m=1

N2

�
n=1

N3

el,m,n�
2o3+�2k+2n−��3

2o3+�2k+2n+2−��3�
�2j−2m−1�2

�2j−2m+1�2

��
�2i−2l−1�1

�2i−2l+1�1

G��1,�2,�3�d� �correlation and convolution�

�16b�

Although Eq. �16a� and �16b� have different integral limits for
d�3, their 3D indefinite integrals are identical, which will be car-
ried out in this section. Note that proper integral constants will be
added or omitted in the indefinite integrals �not unique� in order to
reach concise formulas, and these constants do not affect the defi-
nite integrals. Also the summation convention is not used in this
section. Four key integrals can be pulled out from Eq. �9�,

Ai =� aid� with a1 = 1/r, a2 = r, a3 = ln�r + �3�,

and a4 = �3 ln�r + �3� �17�

where r2=�1
2+�2

2+�3
2. The explicit expressions of Ai are listed in

the Appendix for reference. However, the derivatives of Ai are
necessary for evaluating the elastic field. According to Eq. �15�, a
derivative with respect to x3 is equivalent to one with respect to
�3. It is obvious that Ai,123=ai and A3=��3 ln�r+�3�−r�d�1d�2.
Since A4=�� /��3���3 ln�r+�3�−r��3d�1d�2d�3, one can find
that 2A4=A2+�3A3. Ahmadi’s thesis �24� listed many useful
double indefinite integrals and is helpful to obtain analytical ex-
pressions for the derivatives of Ai. Define four functions to sim-
plify integral expressions,

Uk = tan−1 � j�l

�kr
�18a�

Vk =
1

�18b�

r�r + �k�
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Wk =
2r + �k

r3�r + �k�2 �18c�

Xk = tan−1 �k

r + �l + � j
�18d�

Note that Vk,l=−�lWk and Vk,k=−1/r3. Also, for a triple integra-
tion, Uk,l=�k� j / �r��k

2+�l
2�� is equivalent to −�kVj, and Uk,k is

equivalent to �lVj +� jVl. One can verify that the derivatives of Xk
and −tan−1��r+�l+� j� /�k� with respect to �1, �2, and �3 are iden-
tical. Similarly, the derivatives of �k

nXk and ��k
n /2�tan−1�� j�l /�kr�

�power n is a natural number� with respect to �1, �2, and �3 are
equal to each other. It seems that these terms are equivalent in
terms of a triple integration. However, this is not the case due to
the special characteristics of inverse tangent, and one should avoid
interchanging them. Since �1, �2, and �3 are interchangeable in a1
and a2, results for A1 and A2 could be concisely written with
indices. In the following equations, indices j, k, and l are different
�j�k� l� and each has a value of 1, 2, or 3.

A1,k = � j ln�r + �l� + �l ln�r + � j� − �kUk,

A1,kl = ln�r + � j�, A1,kk = − Uk, A1,kkl = �kVj ,

A1,kkk = − � jVl − �lVj, A1,123k = − �k/r
3, A1,kkll = − �k�lWj ,

A1,kkkk = �k�lWj + �k� jWl, A1,kkkl = Vj − �k
2Wj ,

A2,kkl = �k ln�r + � j�, A2,kkk = � j ln�r + �l� + �l ln�r + � j� − 2�kUk,

A2,123k = �k/r, A2,kkkl = ln�r + � j� + �k
2Vj, A2,kkll = �k�lVj ,

�19�

A2,kkkk = − � j�kVl − �l�kVj − 2Uk,

A2,123kl = − �k�l/r
3, A2,123kk = ��l

2 + � j
2�/r3,

A2,kkkll = �lVj − �k
2�lWj ,

A2,kkkkl = 3�kVj − �k
3Wj ,

A2,kkkkk = �k
2�lWj − 3�lVj + �k

2� jWl − 3� jVl

One can verify that the derivatives of the special integral function
D in Chiu �3� are equivalent to those of A2 times a factor of −�2.

For A3 and A4, the derivative with respect to �3 will change
them into A1 and �A3+A2,3�, respectively. In the following equa-
tions, k and l are different and can only take a value of 1 or 2.

A3,kk = − �k ln�r + �l� − 2�3Xk, A3,12 = �3 ln�r + �3� − r ,

2A3,kkk = − 2 ln�r + �l� − ��k
2 + �3

2�Vl − ��3 − r��lV3,

A3,kkk = −
�k

r + �3
,

4A4,kkk = 2�l ln�r + �3� − �3��k
2 + �3

2�Vl − �3�l��3 − r�V3 − 4�kUk,

�20�

2A4,kkl = �k ln�r + �3� −
�k�3

r + �3
, 2A4,kkll = �k�lV3 +

�k�l�3

�r + �3�2r
,

4A4,kkkk = V3�l�k	 �3

r
− 2
 + �3�k��l��3 − r�W3 − 6Vl + ��k

2 + �3
2�Wl�
− 4Uk
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4A4,kkkl = 2 ln�r + �3� + �3�k
2 − 2�3

2�V3 + �3�l
2��3 − r�W3

+
�l

2r + ��k
2 + �3

2��3

r3

One can verify these indefinite integrals by checking their deriva-
tives with respect to � �since ��=�x� with the help of software,
such as MAPLE® or MATHEMATICA®. For instance,
�3Ai,jk /��1��2��3 should equal �2ai /�� j��k.

The integrals over element El,m,n evaluated at �xi ,xj ,xk� in Eq.
�14� are the influence coefficients �ICs�. The ICs for convolution
are considered first. In Eq. �16a�, one can see that this type of ICs
is related to the relative coordinates or relative labels. In order to
remove redundancy, one can take the integral out from Eq. �16a�
and set l=m=n=0,

Di,j,k =�
�2k+�−2�3

�2k+��3 �
�2j−1�2

�2j+1�2�
�2i−1�1

�2i+1�1

G��1,�2,�3�d� �21�

where i , j ,k could be negative, i� �−N1 ,N1−1�, j� �−N2 ,N2−1�,
and k� �−N3 ,N3−1�. ICs for correlation are dependent on o3 but
can be handled in a similar way as those for convolution

Di,j,k =�
2o3+�2k−��3

2o3+�2k−�+2�3�
�2j−1�2

�2j+1�2�
�2i−1�1

�2i+1�1

G��1,�2,�3�d�

�22�

2.4 Surface Normal Displacement Due to Eigenstrains.
Jacq et al. �13� utilized reciprocal theorem and the zero trace of
plastic strains, then derived the integral and ICs formulae for sur-
face normal displacement due to the plastic strains �see Eq. �1.13�,
�1.14� and Eq. �2.2�–�2.7� in �13��. Note that �a� Eq. �2.2� in �13�
is a convolution only after one properly adjusts �M ,A� into
�A ,M�; �b� The indefinite integrals are expressed in Eq. �2.7�
where Fij should be defined, in their notation, as follows instead
of the definition given on p. 658 �13�

�3Fij

�x1�x2�x3
= ���u3i,j

* + u3j,i
* � i = j

2��u3i,j
* + u3j,i

* � i � j
�

These formulas are critical in contact analyses since efficient
evaluation of the surface normal displacement directly shortens
the computation time. In the following, the assumption of zero
trace is removed, and an equation for surface normal displacement
at �x1 ,x2 ,0� of a half-space subject to eigenstrains is simplified
from Eqs. �1�, �9�, and �10� due to x3=0,

u3 = −
1

2�
�

�

�− 2e13�R,133 − �,1� − 2e23�R,233 − �,2�

+ 2e12�D�,12 + R,123� + e11�D�,11 + R,113� + e22�D�,22 + R,223�

+ e33��2� − 3��,3 + R,333� − 2�eii�,3�dx� �23�
which is equivalent to the results by Jacq et al. �13�. One can see
that in Eq. �23�, except the integral with respect to x3�, the other
two integrals are convolutions. The corresponding ICs can be
found by using Eqs. �19� and �20� and the following:

Di,j,k =�
o3+�2k−��3

o3+�2k−�+2�3�
�2j−1�2

�2j+1�2�
�2i−1�1

�2i+1�1

G��1,�2,�3�d� �24�

3 Numerical Scheme

3.1 Discrete Convolution-FFT Algorithm. Many research-
ers �20–23� have reported applications of FFT technique to linear
elastic contact problems. The known FFT-based algorithms might
fall into two categories �23�: �1� Continuous convolution and FFT
�CC-FFT� algorithm, and �2� discrete convolution and FFT �DC-

FFT� algorithm. The CC-FFT algorithm uses the frequency re-
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sponse function directly and encounters periodic error. The latter
algorithm is more straightforward because a discrete series with a
finite length requires the discrete convolution theorem and FFT.
Zero padding and wrap around order are involved in the DC-FFT
algorithm. Two-dimensional algorithms could be extended to
three dimensional ones easily. The detailed algorithm can be
found in �19,23�.

3.2 Discrete Correlation-FFT Algorithm. A discrete
correlation-FFT �DCR-FFT� algorithm, which is similar to the
DC-FFT algorithm, is introduced here to handle correlation com-
putation. The DCR-FFT algorithm is applicable for multidimen-
sion problems and can be combined with the DC-FFT algorithm
to evaluate hybrid convolution and correlation expressions. How-
ever, in order to illustrate the principle of this algorithm clearly, a
one-dimensional correlation is considered in this section.

� j = �
i=1

N3

eiDi+j �25�

After zero padding and using a wrap-around order, the vector of
the ICs, D, becomes D� , while the vector of the eigenstrains, e,
becomes e� after zero padding alone. Their FFT transformation, D� F

and e�F, have values corresponding to both positive and negative
frequency. After the values in D� F are interchanged between posi-
tive and negative frequency, the new vector is denoted by D= F, and
the application of the discrete correlation theorem to Eq. �25�,
vector � could be recovered from the inverse FFT of the element-
by-element multiplication between e�F and D= F,

� ⇐ IFFT�e�FD= F� �26�

For the hybrid expression of the convolution and the correlation,
the DC-FFT algorithm and the DCR-FFT algorithm should be
combined to handle the convolution and the correlation.

4 Results and Discussion
In this section, numerical results from the formulas and meth-

ods mentioned in the previous sections are compared to numerical
results reported in �3,4� and to analytical results in order to verify
all formulas and the numerical scheme. Simple strains are used,
such as a strain with a single nonzero component or a thermoelas-
tic strain, following the corresponding literature. Chiu’s papers
provide an excellent benchmark for Eqs. �18�–�20�, since numeri-
cal results were obtained for problems with a cuboidal region
specified with different uniform strains. Infinite space problems
are always a good start for a numerical study, and numerical re-
sults of normal stresses using Eqs. �6b�, �6c�, and �18�–�20� are
shown in Fig. 3 for e11�0 inside three different cuboids �2a
�2b�2c�. �11 is shown by solid lines with filled symbols, and
�22 �or �33� is shown by dashed lines with unfilled symbols. Fig-
ure 3 is identical to Chiu’s result �Fig. 2 in �3��. According to Eq.
�23� and the corresponding indefinite integrals, the surface normal
displacement at the origin is obtained for three types of strains
inside a cube. The variation of u3 with the depth of the cubic
center in Fig. 4 clearly shows that the effect of the specified strain
decays quickly as the cube goes deeper. Except the sign differ-
ence, Fig. 4 agrees with Chiu’s result �Fig. 5 in �4��. The label of
Fig. 5 in �4� may be missing a negative sign. The stress fields
inside the half-space due to two different types of strains inside
the same cube are shown in Figs. 5 and 6, respectively. The two
figures overall agree with Figs. 2 and 3 in �4�, although there are
a few minor discrepancies, such as �33 at point C with small Z0 /a.
In general, all stresses decrease algebraically �less tensile stress or
larger compressive stress� as the cube goes deeper, except for �11
at the origin in Fig. 6 with small Z0 /a. These comparisons verify

almost all formulae presented in previous sections.
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When � is a spherical region of radius a with the center at
�0,0 ,Z0�, Mindlin and Cheng �25� found the thermoelastic field
by using the well-known results �26� for the potential for a homo-
geneous sphere

Fig. 3 Variation of stresses „�11,�22=�33… in an infinite space
along the x1 axis due to a specified strain, e11, uniformly dis-
tributed over an origin-centered cuboid for three different a /b
values

Fig. 4 Variation of u3 at the origin of a half-space with the
depth of the cubic center for three different strains

Fig. 5 Stresses „�11, �22, and �33… at three different locations
„o, A, and B… in a half-space due to a specified strain, e22, inside

a cuboid vs the depth of the cubic center
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�
�

�Idx� =
4�a3

3R−
x � �

�
�

�Idx� =
2��3a3 − R−

2�
3R−

x � �

�
�

�dx� =
4�a3

3R+
∀ x �27�

where R±=�x1
2+x2

2+ �x3±Z0�2. The thermoelastic strain is ex-
pressed as eij =�T�ij, where �T is constant. Mindlin and Cheng’s
solutions �25� are used to benchmark both the formulas and the
new numerical scheme. The target domain is �−2a :2a ,
−2a :2a ,0 :3a� in the three directions and is divided into 128
�128�256 elements. A personal computer with the Pentium 4
CPU �1.8 GHz� is used to carry out numerical simulation. Varia-
tions of stress �33 along the x3 axis due to a uniform thermoelastic
strain inside the sphere for two different depths of the center �a or
1.5a� are shown in Fig. 7, where the stress is normalized by �0
=2�1+����T /3�1−��. The corresponding analytical results are
shown as well for comparison. The minor difference between the

Fig. 6 Stress „�11=�22 and �33… of a half-space at three differ-
ent locations „o, C, and B… due to a specified strain, e33, inside
a cuboid vs the depth of the cubic center

Fig. 7 Stress �33 of a half-space along the x3 axis due to a
uniform thermoelastic strain inside a sphere „radius a… for two

different depths of the center „a or 1.5a…
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numerical and analytical results could be attributed to discretiza-
tion error. Similar to the case with the cube, the deeper the sphere,
the smaller the stress �33. It is also noted that the existence of the
surface causes tensile stress �33 when the sphere is very close to
the surface. No tensile stress �33 is found for Z0=1.5a. Figure 8
depicts the three-dimensional �3D� distribution of stress �33 over
the center section �x2=0� for Z0=1.5a. Although stress �33 is
continuous along the x3 axis �Fig. 7�, it is not continuous else-
where due to the discontinuity of the applied strain. The compres-
sive stress is dominant, while the tensile stress appears only in the
neighborhood of the circle at the intersection of the sphere and the
plane of x3=1.5a. In order to demonstrate the capability of our
method for solving problems with nonuniformly distributed
strains, the region inside the sphere �radius=a� is specified with a
thermoelastic strain proportional to the distance between a loca-
tion and the spherical center, eij =cR−�ij, where c is a constant.
Variations of stress �33 along the x3 axis due to this specified
thermoelastic strain with two different depths of the center �a or
1.5a� are depicted in Fig. 9. The corresponding 3D distribution is
shown in Fig. 10. The stress is normalized by �0=2�1
+���c /3�1−��. It is interesting to see that stress �33 is almost
linear inside the sphere.

5 Conclusions
The existing superposition method used to find the elastic field

in a half-space with eigenstrains is indirect and complicated. This
paper presents a direct method by means of the Mindlin and

Fig. 8 Distribution of stress �33 over the center section with
x2=0 due to a thermoelastic strain

Fig. 9 Variation of stress �33 of a half-space along the x3 axis

due to a thermoelastic strain

Journal of Applied Mechanics
Cheng’s results. A set of analytical formulae for influence coeffi-
cients in terms of derivatives of four key integrals is presented and
is used to express the elastic field caused by the eigenstrains with
arbitrary distribution in a half-space. These formulae are bench-
marked by analytical or existing numerical results. Based on the
nature of the integral expressions of the elastic field, the discrete
correlation and fast Fourier transform �DCR-FFT� is applied. Both
discrete convolution and fast Fourier transform �DC-FFT� and
DCR-FFT algorithms are used to accelerate the numerical calcu-
lation. The straightforward formulae and the numerical algorithms
reduce the difficulties of code development and enable fast and
accurate analyses of inclusion problems and contact problems.
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Nomenclature
C � −� /4��1−��
D � 1−2�
r � ��1

2+�2
2+�3

2

RI
� ��x1−x1��

2+ �x2−x2��
2+ �x3−x3��

2

R � ��x1−x1��
2+ �x2−x2��

2+ �x3+x3��
2

Vk � 1/r�r+�k�
W 3 2

Fig. 10 Distribution of stress �33 over the center section with
x2=0 due to a thermoelastic strain. „a… Z0=a; „b… Z0=1.5a
k � �2r+�k� /r �r+�k�
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Xk � tan−1 ��k / �r+�l+� j��
Uk � tan−1 ��l� j /r�k�
ui � displacements

�ij � Kronecker’s delta
eij � eigenstrains �inelastic strains�

� ,� � shear modulus and Lame’s constant, 2�� / �1
−2��

� � Poisson’s ratio
�ij � stress


 � R− �x3+x3���
� � �I=1/RI, �=1/R, harmonic potentials
� � ln�R+ �x3+x3���, logarithmic potential
� � domain with eigenstrains
�t � target domain �domain of interest�

Appendix A: Equalities and Integrals

A.1 Useful Equalities

�,3 = �, 
,3 = − �

�2RI = 2�I, �2R = 2�

�2� = 0

�2� = 0 �2 ln�RI − �x3 − x3��� = 0

�2
 = 0

�2��xi − xi���� = 2�,i �i = 1,2�

�2�x3�� = 2�,3 = 2�

�2�x3�� = 2�,3, �2�x3�,3� = 2�,33

R,3 = �x3 + x3��� or x3�� = R,3 − x3�

in general, R,3 . . . 3
n

= �x3 + x3���,3 . . . 3
n−1

+ �n − 1��,3 . . . 3
n−2

A.2 Volumetric Integrals

A1 = �1�2 ln�r + �3� + �2�3 ln�r + �1� + �3�1 ln�r + �2�

−
1

2
��1

2U1 + �2
2U2 + �3

2U3�

���26�, p . 78 and 79�

A2 =
�1�2�3r

4
−

1

12
��1

4U1 + �2
4U2 + �3

4U3� +
1

6
��r2 − �1

2��2�3 ln�r

+ �1� + �r2 − �2
2��3�1 ln�r + �2� + �r2 − �3

2��1�2 ln�r + �3��
The above expressions can be found in �6� �p. 108� or �27�

A3 =�� ��3 ln�r + �3� − r�d�1d�2

A3 = �1�2�3 ln�r + �3� −
1

6
��1

2 − 3�3
2��1 ln�r + �2� −

1

6
��2

2

− 3�3
2��2 ln�r + �1� − �1

2�3X1 − �2
2�3X2 −

�3
3

6
U3 −

3

2
�1�2�3

−
1

3
r�1�2
2A4 = A2 + �3A3
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2A4 = −
�1�2�3r

12
−

3�1�2�3
2

2
−

1

12
��1

4U1 + �2
4U2 + 3�3

4U3�

+
2

3
��2�3

2 ln�r + �1� + �1�3
2 ln�r + �2�� + �1�2	�3

2

+
�1

2 + �2
2

6

ln�r + �3� − �3

2�1
2X1 − �3

2�2
2X2
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Axisymmetrical Snapping
of a Spinning Nonflat Disk
In this paper we study the steady-state deflection of a spinning nonflat disk, both theo-
retically and experimentally. Both the initial and the deformed shapes of the disk are
assumed to be axisymmetrical. Von Karman’s plate model is adopted to formulate the
equations of motion, and Galerkin’s method is employed to discretize the partial differ-
ential equations. In the case when the initial height of the nonflat disk is sufficiently large,
multiple equilibrium positions can exist, among them the two stable one-mode solutions
P0

1 and P0
3 are of particular interest. Theoretical investigation shows that if the disk is

initially in the stressed position P0
3, it will be snapped to position P0

1 when the rotation
speed reaches a critical value. Experiments on a series of copper disks with different
initial heights are conducted to verify the theoretical predictions. Generally speaking, the
experimental measurements agree well with theoretical predictions when the initial
height is small. For the disks with large initial heights, on the other hand, the measured
snapping speeds are significantly below the theoretical predictions. The circumferential
waviness of the copper disks induced in the manufacturing process and the aerodynamic
force at high rotation speed are two possible factors causing this discrepancy.
�DOI: 10.1115/1.2043188�
Introduction
Most of the research in flexible disk dynamics assume that the

disk is perfectly flat before deformation. However, it is inevitable
that runout be produced in the manufacturing process of the disk.
In investigating the head-disk interface of a flexible disk, Ono and
Maeno �1� concluded that it is necessary to take into account the
nonflatness of the disk in order to model the interface force cor-
rectly. Capino �2� studied the interaction between the gas flow and
a disk of initial transverse runout rotating close to a rigid flat
plate. To study the effect of spinning speed on the disk runout,
Benson and Cole �3� used the finite difference method to analyze
four example warped disks and conducted experiments on one of
them. Jia �4� worked on the same problem with the Galerkin
method. In these previous studies, the runout and the deformation
of the disks are assumed to be small, and a linearized plate equa-
tion is used to predict the steady-state deflection.

In this paper we extend Benson and Cole’s �3� work to consider
a “larger” initial warpage and deflection �but small strain and
curvature still� of the spinning disk. To achieve this we formulate
the nonlinear equations of a spinning disk based on von Karman’s
plate model, which is capable of taking into account the mem-
brane stretching due to bending deflection. The nonlinear equa-
tions of motion of a spinning flat disk were first formulated by
Nowinski �5�. Here we extend Nowinski’s formulation to a spin-
ning disk with initial runout. The equations are nondimensional-
ized with careful examination on the order of magnitude of the
out-of-plane and in-plane deflections. The nonlinear equations can
be reduced to the conventional equation as the thickness param-
eter of the plate approaches zero. We then use the Galerkin
method twice to discretize the partial differential equations into a
system of ordinary differential equations. By analyzing these non-
linear equations we can calculate the steady-state deflections and
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study the stability of these equilibrium configurations. Experi-
ments on a series of copper disks are conducted to verify the
theoretical predictions.

Equations of Motion
We consider an elastic circular thin nonflat disk spinning with

constant speed �, as shown in Fig. 1�a�. The nonflat disk is called
“thin” if the ratio of its thickness to the radius of curvature of its
middle surface is much less than unity. The disk is assumed to be
fully clamped at the inner radius r=a and free at the outer radius
b. We assume that the initial �unstressed� shape w0 and the trans-
verse deflection w, both measured from the same base plane, are
of the order of magnitude of the thickness h.

In order to derive the equation of motion, we consider a small
element of the middle surface of the spinning disk, with transverse
shear resultants Qr, Q�, Qr�, bending and twisting moments Mr,
M�, Mr�, and membrane stress resultants Nr, N�, and Nr� acting on
the boundary, as shown in Fig. 1�b�. The element is also subjected
to a force �hr2�2drd� at the center of the element in the radial
direction due to centrifugal body force, where � is the mass den-
sity of the disk. By considering the force balance in the z direc-
tion, we can write the equation of motion of the spinning disk
with respect to the body-fixed coordinate system �r ,�� as

�hrw,tt − �Nrrw,r�,r − r−1�N�w,��,� − �Nr�w,��,r − �Nr�w,r�,�

= �rQr�,r + Q�,� �1�

From the moment balance conditions with respect to the � and r
axes, we obtain the relations of the form

Q� = r−1��rMr��,r + M�,� + Mr�� �2�

Qr = r−1�− M� + �rMr�,r + Mr�,�� �3�
The equilibrium equations in the radial and tangential directions
are

�rNr�,r + Nr�,� − N� + �hr2�2 = 0 �4�

�rNr��,r + N�,� + Nr� = 0 �5�
The two equilibrium equations �4� and �5� can be satisfied auto-
matically by assuming a stress function �, which is defined as

follows:
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Nr = r−1�,r + r−2�,�� − 1
2�h�2r2 �6�

N� = �,rr − 1
2�h�2r2 �7�

Nr� = − �r−1�,��,r �8�
We assume that Hooke’s law is valid throughout, in particular,

in its isotropic form. The relations between the bending moments
and disk deflection are

Mr = − D��w − w0�,rr + ��r−1�w − w0�,r + r−2�w − w0�,���� �9�

M� = − D�r−1�w − w0�,r + r−2�w − w0�,�� + ��w − w0�,rr� �10�

Mr� = − �1 − ��D�r−1�w − w0�,r� − r−2�w − w0�,�� �11�
where

D =
Eh3

12�1 − �2�

E and � are Young’s modulus and Poisson’s ratio of the disk.
Equations �9�–�11� assume that the curvatures of the initial and
stressed shapes of the disk are small compared to unity. The rela-
tions between the stress resultants and the in-plane strains are

�r =
1

hE
�Nr − �N�� �12�

�� =
1

hE
�N� − �Nr� �13�

�r� =
2�1 + ��

hE
Nr� �14�

The relations between the strains and the displacement are non-
linear

�r = ur,r + 1
2 �w,r�2 − 1

2 �w0,r�2 �15�

�� = r−1ur + r−1u�,� + 1
2r−2�w,��2 − 1

2r−2�w0,��2 �16�

�r� = �r−1ur,� + u�,r − r−1u� + r−1w,rw,� − r−1w0,rw0,�� �17�

where ur and u� are the radial and tangential displacements of a

Fig. 1 „a… A spinning nonflat disk and „b… a disk element
material point relative to the body-fixed coordinate system.
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After substituting Eqs. �2�, �3�, �6�, and �11� into Eq. �1�, we
obtain the equation of motion of the spinning disk in the z direc-
tion

�hw,tt + D�4�w − w0� = w,rr�r−1�,r + r−2�,��� + �r−1w,r

+ r−2w,����,rr − 2�r−1w,��,r�r−1�,��,r

− �h�2r� r

2
�2w + w,r� �18�

By using Eqs. �12�–�14� and �6�–�8�, one can derive the following
compatibility equation:

r−1�r���,rr − r−1�r,r − r−2�r�r�,��,r + r−2�r,��

=
1

hE
�2�Nr + N�� + 2�1 + ���h�2 �19�

Substituting Eqs. �15�–�17� and �6�–�8� into Eq. �19�, we obtain
the equation governing the stress function � as

�4� = Eh�− w,rr�r−1w,r + r−2w,��� + �r−1w,r� − r−2w,��2

+ w0,rr�r−1w0,r + r−2w0,��� − �r−1w0,r� − r−2w0,��2�

+ 2�1 − ���h�2 �20�

In the special case when w0=0, Eqs. �18� and �20� reduce to the
equations of motion formulated by Nowinski �5�.

Nondimensionalization
Equations �18� and �20� can be nondimensionalized by intro-

ducing the following dimensionless quantities �with superposed
asterisk�:

t* =
t

b2� D

�h
, �* = �b2��h

D
, r* =

r

b
, �w*,w0

*� =
1

h
�w,w0�

�* =
�

D
, � =

a

b
, �Nr

*,N�
*,Nr�

* � =
b2

D
�Nr,N�,Nr��

U* =
D

b2h2U, �	rb
* ,	�b

* � =
b2

Dh
�	rb,	�b�

The parameters U and �	rb ,	�b� are the strain energy and bending
stresses of the disk, which will be discussed later. After substitut-
ing the above relations into Eqs. �18� and �20�, and dropping all
the superposed asterisks thereafter for simplicity, we obtain the
following dimensionless equations:

w,tt + �4�w − w0� = w,rr�r−1�,r + r−2�,��� + �r−1w,r + r−2w,����,rr

− 2�r−1w,��,r�r−1�,��,r − �2r� r

2
�2w + w,r�

�21�

�4� = 12�1 − �2��− w,rr�r−1w,r + r−2w,��� + �r−1w,r� − r−2w,��2

+ w0,rr�r−1w0,r + r−2w0,��� − �r−1w0,r� − r−2w0,��2�

+ 2�1 − ���2 �22�

Axisymmetrical Deformations
In this paper we assume that the initial shape w0 is axisymmet-

ric. It is well known that a shallow shell with an axisymmetric
initial shape admits both axisymmetrical and asymmetrical defor-
mations. However, the asymmetrical configurations are important
only when the shallow shell is under dynamic load and the initial
height of the shell is large �6,7�. Since in this paper we are inter-
ested in the steady-state deformation and static snap-through phe-
nomenon of a nonflat disk with a relatively low initial height, we
assume that the axisymmetrical deformation dominates the behav-

ior of the disk to avoid unnecessary complication in algebraic
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manipulation. The justification of this simplification will be exam-
ined later by experimental observation. Following these simplifi-
cations, the governing equations �21� and �22� can be reduced to

u,tt + �4u = r−1�u + w0�,rr�,r + r−1�u + w0�,r�,rr

− �2r� r

2
�2�u + w0� + �u + w0�,r	 �23�

�4� = − 12�1 − �2�r−1�u,ru,rr + u,rw0,rr + w0,ru,rr� + 2�1 − ���2

�24�

where

u = w − w0 �25�

The boundary conditions for u at inner radius r=� are

u = 0 �26�

u,r = 0 �27�

At outer radius r=1 the boundary conditions are

��2u�,r = 0 �28�

u,rr + �r−1u,r = 0 �29�

The zero in-plane displacement boundary conditions for � at r
=� can be written as �7�

�,rr − �r−1�,r = 0 �30�

r�,rrr + �� − 1�r−1�,r = 0 �31�

The traction-free boundary condition Nr=0 at r=1 can be written
as

r−1�,r = 1
2�2r2 �32�

The other condition Nr�=0 at r=1 is satisfied automatically. To fix
the problem that we have only three boundary conditions for �,
we use a trivial condition �=0 at r=1. It is noted that the stress
resultants will not be changed by adding an arbitrary constant to
the stress function.

It is noted that although Eqs. �23� and �24� are nonlinear in
terms of u, they are linear in �. Therefore, we can divide the stress
function � in Eq. �24� into two parts

� = �1 + �2 �33�

The first part �1 accounts for the centrifugal effect and satisfies
the inhomogeneous equation

�4�1 = 2�1 − ���2 �34�

�1 satisfies the same inhomogeneous boundary conditions as �
does. The second part �2 satisfies the equation

�4�2 = − 12�1 − �2�r−1�u,ru,rr + u,rw0,rr + w0,ru,rr� �35�

and the homogeneous version of boundary conditions �30�–�32�.
After solving �1 and substituting it into the dimensionless forms
of Eqs. �6� and �7� �replacing � by �1�, we can derive the axi-
symmetrical stress resultant fields N1r and N1� due to centrifugal
effect as

N1r = �2�C1 + C2r−2 + C3r2� = �2N̄1r �36�

N1� = �2�C1 − C2r−2 + C4r2� = �2N̄1� �37�

where

C1 =
�1 + ��

8

�� − 1��4 − �3 + ��
�� − 1��2 − �1 + ��

C2 =
�1 − ���2 �� + 1��2 − �3 + ��

2
8 �� − 1�� − �1 + ��
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C3 = −
�3 + ��

8
, C4 = −

�1 + 3��
8

Here we extract �2 from the stress resultants purposely by intro-

ducing N̄1r and N̄1�. Both components are tensile throughout the
disk.

After substituting Eq. �33� into Eq. �23�, we can rewrite the
equation of motion as

u,tt + �4u − �2r−1�N̄1rr�u + w0�,r�,r

= r−1�2,r�u + w0�,rr + r−1�u + w0�,r�2,rr �38�

In the case when the membrane stretching effect is neglected �3�,
the solution �2 in Eq. �35� is identically zero, and as a conse-
quence, Eq. �38� can be reduced to

u,tt + �4u − �2r−1�N̄1rr�u + w0�,r�,r = 0 �39�

In the following, we assume that the initial shape w0 has a maxi-
mum H at the outer radius r=1. Therefore, we can write

w0�r� = Hw̄0�r� �40�

where w̄0�1�=1.

Discretization
In order to solve the coupled nonlinear equations �35� and �38�,

we expand u and �2 in terms of M +1 assumed functions un and

n as follows:

u�r,t� = 

n=0

M

cn�t�un�r� �41�

�2�r,t� = 

n=0

M

dn�t�
n�r� �42�

un and 
n satisfy the equations

�4un − �n
4un = 0 �43�

�4
n − �n
4
n = 0 �44�

and the same homogeneous boundary conditions as u and �2 do.
The subscript n represents the number of nodal circles of the
characteristic functions, excluding the circle at the inner radius. It
can be proved mathematically and verified numerically that both
un and 
n are orthonormal.

After substituting Eqs. �41� and �42� into Eq. �35�, multiplying
both sides by 
p and integrating, we obtain

dp = 

i=0

M �ciHpi + 

j=0

M

cicjpij� �45�

where

pi =
− 24��1 − �2�

�p
4 �

r=�

1


p�ui,rw̄0,rr + ui,rrw̄0,r�dr

pij =
− 24��1 − �2�

�p
4 �

r=�

1


pui,ruj,rrdr

After substituting Eqs. �41�, �42�, and �45� into Eq. �38�, multi-
plying by um, and integrating over the annular region, we can

discretize Eq. �38� into a system of coupled equations for cm�t�
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c̈m + �m
4 cm − �2H�m − �2


n=0

M

cn�mn
�1�

= 

i=0

M



n=0

M



p=0

M �cicnHpi + 

j=0

M

cicncjpij��pnm

+ 

i=0

M



p=0

M �ciHpi + 

j=0

�

cicjpij�H�pm
�2� �46�

where

�m = 2��
�

1

�rN̄1rw̄0,r�,rumdr

�mn
�1� = 2��

�

1

�rN̄1run,r�,rumdr

�pm
�2� = 2��

�

1

�
p.rw̄0,r�,rumdr

�pnm = 2��
�

1

�
p,run,r�,rumdr

In the case when the membrane stretching due to bending is ne-
glected, the right-hand side of Eq. �45� is excluded and the equa-
tions of motion become

c̈m + �m
4 cm − �2H�m − �2


n=0

M

cn�mn
�1� = 0 �47�

It is interesting to note that removing all the quadratic and cubic
terms from Eq. �46� does not exactly result in Eq. �47�.

Equilibrium Positions and Convergence Test
With the hope that the first few modes in the expansions �41�

and �42� will dominate the solutions, we assume that the initial
shape of the disk is in the form of the fundamental mode shape
u0�r�

w̄0 =
u0�r�
u0�1�

�48�

The maximum physical radial slope of the initial shape is
Hh /bw̄0,r�1� at the outer rim. In order for the plate equations �18�
and �20� to be acceptable, the maximum slope has to be small. To
study the steady-state deflection of the disk at various rotation
speeds, the acceleration terms in Eq. �46� are neglected. The thick
lines in Fig. 2 show the one-mode approximation for the deformed
position at outer rim w�1�, as a function of rotation speed � for
initial heights H=3 and 5. The radius ratio � is assumed to be
0.25. For small initial height H=3, there exists only one equilib-
rium position at �=0. As the rotation speed increases the disk is
flattened as can be easily expected. At large value of �, the de-
formed height w�1� approaches an asymptotic positive value. It
appears that this slightly concave shape of the disk is persistent no
matter how large the rotation speed is.

For the initial height H=5, there are three equilibrium positions
at �=0, denoted by P0

1, P0
2, and P0

3, respectively. The subscript 0
signifies that the equilibrium positions contain mostly the u0
mode. The superscripts denote the sequence number of these one-
mode solutions from top to bottom. The stability of these positions
is determined by the usual perturbation technique, for example,
see �8�. It can be shown that both P0

1 and P0
3 are stable, while P0

2

is unstable. In this paper we use solid and dashed lines to signify

stable and unstable equilibrium positions, respectively. If the disk
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is in position P0
1 when �=0, it will be flattened smoothly as the

rotation speed increases. On the other hand, if the disk is in posi-
tion P0

3 �under the base plane and stressed� when �=0, it will be
snapped to position P0

1 when the rotation speed reaches a critical
value �=8.26.

The results from the one-mode approximation in Fig. 2 for H
=3 and 5 are compared to a two-mode approximation, represented
by thin lines, for the convergence test. We found that the only
noticeable difference between the results from one- and two-mode
approximations is the middle branch P0

2 for H=5. With this con-
vergence test we can be sure that all the possible axisymmetrical
positions have been obtained.

Figure 3 shows the equilibrium positions for H=7 via a two-
mode approximation. These results are compared to a three-mode
approximation for the convergence test. It is found that at this
initial height, the difference between the results from two- and
three-mode approximations is negligible. It is observed that there
are five equilibrium positions when �=0, among them three �de-
noted by P0

1, P0
2, and P0

3� can be obtained via a simple one-mode
approximation, and two �denoted by P01

1 and P01
2 , both unstable�

can be predicted only via a two-mode approximation. The two-
digit subscript 01 signifies that these modes contain mostly modes
u0 and u1. Stability analysis shows that among these five positions
only P0

1 and P0
3 are stable. As the rotation speed increases, the

position P0
1 will be flattened, while position P0

3 merges with P01
2 at

point B when �=15.65, at which the disk snaps from P0
3 to P0

1.
The two unstable positions P0

2 and P01
1 merge at point A to form a

cusp when �=12.56. In the case when only one mode is used in

Fig. 2 Equilibrium positions as functions of rotation speed for
H=3 and 5. The thick and thin lines represent the results from
one- and two-term approximations, respectively. Solid and
dashed lines represent stable and unstable positions,
respectively

Fig. 3 Equilibrium positions as functions of rotation speed for

H=7 from a one-term approximation
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the expansion, the equilibrium loci will follow closely the P0
1, P0

2,
and P0

3 loci as in Fig. 3, except that the loci for P0
2 and P0

3 will be
connected smoothly between points A and B.

Figure 4 shows the equilibrium positions for a larger initial
height H=10. At this initial height, the two-mode approximation
predicts four extra solutions P01

1 , P01
2 , P01

3 , and P01
4 , other than the

three one-mode solutions P0
1, P0

2, and P0
3 when �=0. Among the

four two-mode positions, P01
2 is stable, whereas the other three are

unstable. It is observed that snapping will occur at �=11.32 and
25.44 for positions P01

2 and P0
3, respectively.

By observing the steady-state deflections in Figs. 2–4, we note
that for small initial height �H�10� the spinning disk can snap
only from position P0

3 to P0
1. It is not clear whether the disk can

snap quasi-statically from position P0
1 to P0

3 when the initial height
H is large enough. Although we are unable to prove mathemati-
cally, our additional numerical results indicate that it will not hap-
pen for a wide range of radius ratio �0.1���0.9� and initial
height H up to 50. This gives us the confidence that axisymmetri-
cal snapping can occur only from P0

3 to P0
1 for a disk with initial

shape Eq. �48�.
For a disk with initial shape different from Eq. �48�, for in-

stance, the spherically curled disk proposed by Benson and Cole
�3�

w̄0 =
�r − ��2

�1 − ��2 �49�

the convergence of the approximation procedure may not be as
fast as the case with initial shape Eq. �48�. In particular, the one-
mode approximation may give erroneous prediction on the snap-
ping behavior. For instance, for a disk with initial shape �49� with
H=30, the one-mode approximation predicts that the disk will
snap from position P0

1 to P0
3 at �=77.77. However, two- and

three-mode approximations show that the snapping actually oc-
curs from P0

3 to P0
1 at �=81.20.

Strain Energy Contour
It is interesting to note that at initial height H=10 there exists

one extra stable position P01
2 apart from the top and bottom posi-

tions P0
1 and P0

3. Other calculations show that there may exist
more stable positions in the middle when H becomes even larger.
For instance, there are two extra stable positions in the middle
when H=20. In Fig. 5, we show the strain energy contour of the
disk with H=10 in a c0-c1 plane at �=0 via a two-mode approxi-
mation. The dimensionless strain energy U is calculated according

Fig. 4 Equilibrium positions as functions of rotation speed for
H=10 from a two-term approximation
to
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U =
�

12�1 − �2��
�

1

��Nr + N��2 − 2�1 + ��NrN��rdr

+ ��
�

1

��u,rr + r−1u,r�2 − 2�1 − ��r−1u,ru,rr�rdr �50�

As expected, the positions P0
1 and P0

3 correspond to two valleys,
whereas P0

2 corresponds to the hilltop on the energy surface.
These three one-mode positions lie very close to the line c1=0. It
is also confirmed that the two-mode position P01

2 corresponds to
another valley on the energy surface with a much smaller domain
of attraction. The other two-mode solutions are all saddle points.
It is noted that the concept of equilibrium positions corresponding
to stationary points on the energy surface is good only for a con-
servative system. A disk rotating at a constant speed is not a
conservative system. Therefore, it is meaningless trying to plot the
energy surface for the case with ��0.

Stress Distributions
It is noted that, in general, the membrane stress resultants are

composed of two components, one ��1� from centrifugal force
and the other ��2� due to membrane stretching via bending de-
flection. It is of particular interest to observe the membrane stress
evolution of the bottom position P0

3 as the rotation speed in-
creases. Figure 6 shows the Nr�r� and N��r� of position P0

3 at �

Fig. 5 Strain energy contour for H=10 at �=0

Fig. 6 Membrane stress resultant fields of position P0
3 at vari-
ous speeds: „a… Nr and „b… N�
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=0, 10, 20, and 25. It is noted that the magnitude of the compres-
sive Nr�r� component increases as � increases. The increase is
more profound as � approaches the snapping speed 25.44. On the
other hand, the component N��r� is mostly tensile with the mag-
nitude increasing with rotation speed. The stress resultants Nr�r�
and N��r� of the neighboring stable position P0

1 at �=25 are also
shown �with thinner lines� for comparison. Apparently, both Nr�r�
and N��r� of the position P0

1 are tensile throughout the whole disk.
It is noted that the maximum of N��r� is about 10 times as large as
the maximum of Nr�r� in Fig. 6 as the rotation speed approaches
25. However, in the nonrotating case, the order of magnitude of
Nr�r� and N��r� are about the same.

In addition to the membrane stress resultants discussed above,
the deformed disk is also subject to bending stresses. The maxi-
mum dimensionless bending stresses 	rb and 	�b on the top sur-
face of the disk can be calculated as

	rb = − 6�u,rr + �r−1u,r� �51�

	�b = − 6�r−1u,r + �u,rr� �52�

Figures 7�a� and 7�b� show the 	rb and 	�b distributions of posi-
tion P0

3 at �=0, 10, 20, and 25. It is noted that the magnitudes of
the bending stresses decrease as the rotation speed � increases
because of the flattening of the disk. The bending stresses of the
neighboring stable position P0

1 at �=25 are also shown �with
thinner lines� for comparison.

It is noted that to calculate the physical stresses, both the di-
mensionless stress resultants �Nr and N� in Fig. 6� and bending
stresses �	rb and 	�b in Fig. 7� should be multiplied by the same
factor D /b2h. Therefore, Figs. 6 and 7 can be compared directly to
check the order of magnitude of the membrane and bending
stresses. By comparing Figs. 6�a� and 7�a� for the radial stresses
of position P0

3, we see that the membrane stress is negligible com-
pared to the maximum bending component both in the low- and
high-speed ranges. The maximum dimensionless total radial stress
1300 occurs at inner radius when �=0. On the other hand, the
membrane stress in the hoop direction is about the same order of
magnitude in all speed ranges compared to its bending counter-
part. Further calculation shows that in the speed range from �
=0–25, the maximum dimensionless total hoop stress 723 occurs
on the top surface at the outer radius when �=25. Since the shear
stress is zero in this axisymmetrical case, the radial stress and the

Fig. 7 Maximum bending stress fields of position P0
3 at various

speeds: „a… �rb and „b… ��b
hoop stress are the two principal stresses at any point in the disk.
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According to Tresca yield criteria, we conclude that the total ra-
dial stress on the top surface at the inner radius �mostly due to
bending� at �=0 is the critical stress for failure analysis of a
spinning nonflat disk with �=0.25.

One-Mode Approximation
The above observations show that for a disk with small initial

height �H�5, for example�, the one-mode approximation predicts
the equilibrium configurations of the spinning disk very accu-
rately. For larger initial height it requires more modes to present a
more complete picture of the disk deformation. However, even in
the cases of large initial height, the simple one-mode approxima-
tion still predicts the equilibrium positions P0

1 , P0
2 , P0

3, and the
snapping speed of position P0

3 very accurately. Therefore, for the
ease of analytical study, we use a single mode in the expansions
�41� and �42� as a first approximation. For one-mode approxima-
tion the equilibrium equation becomes

f0c0
3 + f1Hc0

2 + �f2�2 + f3H2 + f4�c0 + f5�2H = 0 �53�
where

f0 = 000�000, f1 = 00�000 + 000�00
�2� . f2 = �00

�1�

f3 = 00�00
�2�, f4 = − �0

4, f5 = �0

First of all, when H is small enough, there will be only one
equilibrium position when �=0, as the case of H=3 in Fig. 2. As
H increases to a certain value, there will exist three equilibrium
positions. This special H can be determined from Eq. �53� as

H2 =
4f0f4

f1
2 − 4f0f3

�54�

For �=0.25 as in Fig. 2, this H is equal to 3.87.
Our second observation is that as the rotation speed increases to

a very large value, the disk will be flattened to a slightly concave
shape above the base plane. The asymptotic generalized coordi-
nate c0

� corresponding to �→� can be obtained from Eq. �53� as

c0
� = −

f5H

f2
�55�

It can be shown that the corresponding outer-rim displacement
w��1� is always positive.

By using one-mode approximation, we can also conveniently
calculate the relation between the snapping speed and the initial
height. To do so, we differentiate Eq. �53� with respect to �2. The
condition �c0 /���2�→� gives us the equation

3f0c0
2 + 2f1Hc0 + f2�2 + f3H2 + f4 = 0 �56�

By eliminating c0 from Eqs. �53� and �56�, we can calculate the
snapping speed as a function of initial height H. This theoretical
prediction of snapping speed of position P0

3 will be revisited later
in Fig. 10 in the comparison with experimental observations.

Measurement of Steady-State Deflections
In order to verify the theoretical predictions, we conducted an

experiment on the deflection measurement of a rotating disk with
axisymmetrical initial shape. The disk is made from a rolled cop-
per sheet with thickness 0.4 mm. The Young’s modulus and mass
density of the material are 103 GPa and 8864 kg/m3, respectively.
The inner and outer radii of the disk are designed to be 3.75 and
15 cm, respectively. In other words, the clamping ratio � is 0.25.
The initial shape of the disk is designed to approximate the first
axisymmetrical mode u0. We first machined a mold of the desired
initial shape with two circular steel slabs on the lathe. The flat
copper sheet is bent and locked in the mold. The mold together

with the bent copper sheet is then put in an oven to heat to 250°C
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for 1 h to relieve the internal stresses. The concave disks are then
polished and mounted on a clamping device with clamping radius
3.75 cm.

To obtain a global picture of the actual initial shape P0
1 of the

disk, we measure the heights at five radial positions. At each ra-
dius we take the measurement at 12 evenly divided points on a
circle. The disk is then pushed by hand gently to the stressed
position P0

3, whose shape is measured by the same method. The
solid lines in Fig. 8 are the measured mean height and the mean
deviation at these five radial positions of the disk with clamping
collar on. In this measurement the plate surface is placed in the
vertical plane, the same configuration when it is mounted on the
motor. In this way we can minimize the effect of gravity on the
disk deflection. Also shown for comparison with dashed lines are
the ideal initial shape u0 and the theoretical prediction of its P0

3

configuration. The mean height of this disk at the outer radius is
3.40 mm�H=8.51�. The maximum radial slope of the initial shape
is calculated to be 0.015, which is small enough to warrant the use
of von Karman’s plate model. The wavy deviation of this speci-
men shown in Fig. 8 is about 15% of the axisymmetrical mean
height. Although the wavy deviation is not as small as desired, the
mean height indeed approximates the theoretical shapes, both in
the P0

1 and P0
3 positions. For convenient reference, we present the

Fig. 8 Measurements of the radial variation of the nonflat disk
prepared for experiment

Fig. 9 Measurement of disk deflection as a function of rotation
speed

Table 1 Mean heights, circumferential deviat
nonflat disks tested in experiment

Disk number 1 2 3

Thickness �mm� 0.4 0.4 0.
Height �mm� 3.40 3.42 1.9
Deviation �%� 15 20 25

Snapping speed �rpm� 3420 3510 117
Journal of Applied Mechanics
measured results with both dimensionless parameters �left and
bottom sides� and the physical ones �right and top sides�. The
same labeling style is adopted in Fig. 9 as well.

The disk is first bent to position P0
3 and is rotated by a motor.

The maximum total radial stress is calculated to be 7.1 MPa at the
inner radius, which is well under the yield stress 55 MPa of cop-
per. The disk deflection at outer radius is measured with a photo-
nic sensor �MTI 2000�. The rotation speed of the motor is varied
at an increment of 90 rpm. The measured mean deflections are
recorded in Fig. 9 as cross marks ���. The disk snaps as the
rotation speed reaches 3420 rpm ��=19.52�. Although the curva-
ture of the initial shape is actually quite small, the snapping phe-
nomenon can still be sighted clearly by the naked eye. After snap-
ping occurs, the test is terminated because the deflection is so
large that the disk surface is out of the measurement range of the
sensor. To continue the measurement on the upper branch, the
photonic sensor needs to be recalibrated. In another test, we start
the disk at position P0

1 and inc rease the speed incrementally up to
3600 rpm. The measured deflections of this test are recorded with
triangular symbols ���. The arrows in the figure indicate the di-
rection of rotation speed variation in both tests.

The solid and dashed lines in Fig. 9 are the theoretical predic-
tions from the one-mode approximation. We found that the mea-
sured deflections agree with the theoretical predictions reasonably
well in both the upper and lower branches. The actual snapping
speed is about 5% lower than the theoretical value. To have a
sense of the order of magnitude of the snapping speed, we also
calculate the critical speed for divergence instability of this disk
�9�. It is found that the first rotation speed of a flat disk at which
the natural frequency of a backward-traveling mode becomes zero
is �1000 rpm.

In order to demonstrate the need to include the effect of trans-
verse deflection on the membrane stretching in predicting the
steady-state deflections, we also present the result from the sim-
plified model �Eq. �47��, neglecting this effect as a chain line in
Fig. 9 for comparison. It is noted that the simplified model over-
estimates the deformation significantly. Benson and Cole �3� re-
ported that their experimentally measured deflections �similar to w
in Fig. 9� on a skewed disk �with initial height in the order of
H=11� are at least 50% greater than the mathematical prediction
using the simplified model. Although the experiment described in
�3� is not for an axisymmetrical disk, the trend that the simplified
model overestimates the disk deformation away from the initially
deformed state is the same as the behavior we predicted with the
chain line in Fig. 9. These observations lead us to suspect that the
neglect of the membrane stretching induced by transverse deflec-
tion may be another culprit causing the discrepancy described in
�3�.

Snapping Speed Measurements
In order to have a clearer picture on the relation between the

snapping speed and the initial height, we run a series of tests on
several disks with various initial heights. The disks are prepared
with the same method as described in the last section, except that
the heating time for each disk is purposely different. By control-
ling the heating time we allow the copper plates to partially spring
back. The disks are divided into two groups, one with thickness
0.4 mm and the other 0.2 mm. Table 1 lists the measured mean

s, and the measured snapping speeds of the

4 5 6 7 8

0.4 0.2 0.2 0.2 0.2
1.68 4.09 3.99 2.80 2.68
24 37 27 23 37
600 3600 3300 2160 1710
ion

4
3

0
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heights at the outer rim, wavy deviation percentages, and the mea-
sured snapping speeds of eight nonflat disks. It is noted that the
deviations of the 0.2 mm disks are, in general, higher than the
0.4 mm disks.

The measured snapping speeds are also recorded in Fig. 10 to
compare with the theoretical prediction via one-mode approxima-
tion. The test results from the 0.4 mm disks and 0.2 mm disks are
marked with symbols ��� and ���, respectively. The disk num-
bers are labeled beside these marks. It is noted that the theoretical
predictions on snapping speeds agree very well with the measure-
ments for the 0.4 mm disks, which have smaller initial heights
�H�10�. On the other hand, the measured snapping speeds are
significantly below the theoretical values for the 0.2 mm disks,
with error in the order of 25%. Two factors are speculated to cause
this discrepancy when H is large. The first is the large circumfer-
ential waviness induced in the 0.2 mm disks. To reduce this wavi-
ness some more sophisticated methods have to be adopted in pre-
paring the specimens. In addition, it is possible that the snapping
process is no longer axisymmetrical when the initial height is
large �7�. The second factor is the aerodynamic force at high ro-
tation speed, which has been shown to have a destabilizing effect
on a flexible spinning disk �10–12�. In the tests on the thin disks,
we do observe flutter phenomenon at high speed before snapping
occurs. More detailed investigations are needed in the future in
order to clarify these complicated phenomena observed in the
laboratory.

Conclusions
In this paper we study the steady-state deflection of a spinning

nonflat disk, both theoretically and experimentally. The initial and
the deformed shapes of the disk are assumed to be axisymmetri-
cal. Von Karman’s plate model, taking into account the membrane
stretching due to bending deflection, is adopted to formulate the
equations of motion. The Galerkin method is used to discretize the
differential equations of motion into a set of ordinary differential
equations. The convergence of the approximation scheme is very
fast in the case when the initial shape is assumed to be in the form
of the first vibration mode shape. Several conclusions regarding

Fig. 10 Relation between snapping speed and initial height for
eight disks
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the steady-state deflection and snapping speed of the spinning
nonflat disk can be summarized in the following:

1. In the case when the initial height of the nonflat disk is very
small, there exists only one equilibrium configuration.

2. When the initial height is large enough, there can exist more
than one steady-state configuration when the disk is at rest.
Among these multiple solutions, the two stable one-mode
solutions P0

1 and P0
3 are of particular interest because both

have large domains of attraction and can be easily estab-
lished in the laboratory.

3. If the disk is initially in the form of the unstressed shape P0
1,

it will be flattened smoothly when the rotation speed in-
creases. On the other hand, if the disk is initially in the
stressed position P0

3, it will be snapped to position P0
1 when

the rotation speed reaches a critical value.
4. Experiments on a series of copper disks with different initial

heights are conducted to verify the theoretical predictions.
Generally speaking, the experimental measurements agree
well with theoretical predictions when the initial height is
small �H�10�. For the disks with large initial heights the
measured snapping speeds are significantly below the theo-
retical predictions. The circumferential waviness of the cop-
per disks induced in the manufacturing process and the aero-
dynamic force at high rotation speed are two possible factors
causing this discrepancy.
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Dynamic Spherical Cavity
Expansion in an Elastoplastic
Compressible Mises Solid
The elastoplastic field induced by a self-similar dynamic expansion of a pressurized
spherical cavity is investigated for the compressible Mises solid. The governing system
consists of two ordinary differential equations for two stress components where radial
velocity and density are known functions of these stresses. Numerical illustrations of
radial profiles of field variables are presented for several metals. We introduce a new
solution based on expansion in powers of the nondimensionalized cavity expansion ve-
locity, for both elastic/perfectly plastic response and strain-hardening behavior. A
Bernoulli-type solution for the dynamic cavitation pressure is obtained from the second-
order expansion along with a more accurate third-order solution. These solutions are
mathematically closed and do not need any best fit procedure to numerical data, like
previous solutions widely used in the literature. The simple solution for elastic/perfectly
plastic materials reveals the effects of elastic-compressibility and yield stress on dynamic
response. Also, an elegant procedure is suggested to include strain-hardening in the
simple elastic/perfectly plastic solution. Numerical examples are presented to demon-
strate the validity of the approximate solutions. Applying the present cavitation model to
penetration problems reveals good agreement between analytical predictions and pen-
etration depth tests. �DOI: 10.1115/1.1985428�
1 Introduction
Since the pioneering work of Bishop et al. �1� the elastoplastic

field induced by a pressurized spherical cavity expanding in an
infinite medium is widely used in simulating penetration phenom-
ena. The study of deep penetration depth projectiles is of much
interest nowadays �Nelson �2�; Levi �3��, along with investiga-
tions of protection against different kinds of penetrators �gun bul-
lets, projectiles, kinetic penetrators, etc.�. An extensive review of
earlier work on dynamic cavity expansion has been given by Hop-
kins �4� with emphasis on the incompressible Mises elastic/
perfectly plastic solid. Later, Goodier �5� developed a model to
predict the penetration depth of rigid spheres launched into metal
targets. In that model the target response is approximated by the
dynamic spherical cavity expansion in an incompressible Mises
elastic/perfectly plastic material, derived by Hill �6� and discussed
by Hopkins �4�. Elastic-compressibility in dynamic spherical cav-
ity expansion has been considered by Hunter and Crozier �7�,
Forrestal and Luk �8�, and Forrestal et al. �9� for an elastic/
perfectly plastic solid while a pure power law for strain-hardening
is examined by Luk et al. �10�, for both compressible and incom-
pressible response. In the present paper, we attempt to derive a
power expansion solution for the problem of dynamic spherical
cavity expansion in a compressible Mises solid. The solution is
based on expanding field variables in powers of the nondimen-
sionalized cavity expansion velocity, and accounts for both
elastic/perfectly plastic and arbitrary strain-hardening �or soften-
ing� response.

We begin in the next section with a brief exposition of the field
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equations for self-similar dynamic expansion in an elastoplastic
compressible Mises solid. We show that the governing system
consists of two ordinary differential equations for two stress com-
ponents where radial velocity and density are known functions of
these stresses. Next, in Section 3, we examine the case of dynamic
spherical cavity expansion in an arbitrary strain-hardening com-
pressible solid. Numerical illustrations of radial profiles of field
variables, for several metals, are presented and discussed. Moti-
vated by the fact that in many practical situations the nondimen-
sionalized cavity expansion velocity is small as compared to one,
we seek a solution by expanding in powers of this nondimension-
alized velocity. For the second-order approximation the solution
for the dynamic cavitation pressure has the Bernoulli �parabolic�
form. A Bernoulli form solution was first introduced for an incom-
pressible elastic/perfectly plastic solid, in the extensive review by
Hopkins �4�, who quoted an unpublished paper by Hill �6�. In
recent years, the Bernoulli form is well known as the best fit
approximation for the dynamic cavitation pressure �Forrestal et al.
�11�; Forrestal et al. �12�; Forrestal et al. �9�; Jones and Rule �13��.
Recently, Durban and Masri �14� derived an exact Bernoulli form
solution for an incompressible Mises solid with arbitrary strain-
hardening �or softening� response.

In Section 4, we study the important case of dynamic spherical
cavity expansion in an elastic/perfectly plastic compressible solid,
again by seeking a second �and here also a third� order expansion
solution in powers of the nondimensionalized velocity. We derive
simple approximate solutions for the cavitation pressure which
show the effect of elastic-compressibility and yield stress on dy-
namic behavior. In the absence of elastic-compressibility, we re-
cover the solution for an incompressible Mises material, derived
by Hill �6� and discussed by Hopkins �4�, while for the quasi-
static expansion we recover the solution obtained by Hill �15�.
Finally, by defining the equivalent cavitation yield stress we in-
troduce an elegant procedure to include strain-hardening in the
simple elastic/perfectly plastic solution.

We conclude with the application of our dynamic cavitation
pressure results to the problem of penetration into metal targets.
The second- and third-order solutions for the dynamic cavitation

pressure are used to obtain expressions for penetration depth.
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These penetration depth predictions were compared to conical,
ogival and spherical-nose penetration tests into aluminium 6061-
T651 targets, conducted by Forrestal et al. �11,12�. We give also a
brief comparison between the present cavitation model and the
Rankine ovoid approach, suggested by Yarin et al. �16�.

2 Steady Self-Similar Dynamic Expansion of a Spheri-
cal Cavity

Consider an internally pressurized spherical cavity �Fig. 1� of
instantaneous radius A, expanding under self-similar conditions in
an infinite medium. The surrounding spherical-symmetric stress
field has the active Cauchy components �r, ��=�� with the radial
equation of motion

d�r

dR
+

2

R
��r − ��� = �R̈ , �1�

where R is the Eulerian radial coordinate of a spherical system
�R ,� ,��, with the origin located at the center of the cavity �de-
notes by O in Fig. 1�, � is the density and a superposed dot
denotes differentiation with respect to time. Now, in steady-state

expansion, where Ȧ is constant, we assume that the only indepen-
dent variable is the nondimensional radial coordinate �=R /A. Ac-
cordingly, we transform the time derivative by the similarity rela-
tion �Durban and Fleck �17�; Durban and Masri �14��

�˙� = �̇
d� �
d�

= � Ṙ

A
− �

Ȧ

A
�d� �

d�
=

Ȧ

A
�V − ��

d� �
d�

, �2�

with V= Ṙ / Ȧ denoting the nondimensional radial velocity. Also,

since Ṙ= ȦV we have for constant Ȧ that R̈= ȦV̇, and it follows
from �2� that �1� can be rewritten as

�r� +
2

�
��r − ��� = m2� �

�0
��V − ��V�, �3�

where ��r ,���= ��r ,��� /E are the nondimensionalized stresses
�with respect to the elastic modulus E�, differentiation with re-
spect to � is denoted by a superposed prime, �0 is the reference
density of the undeformed stress free state and the nondimension-

Fig. 1 Scheme of self-similar field in dynamic expansion of a
spherical cavity. Cavitation pressure is pc. The radial coordi-
nate � is nondimensionalized with respect to the current radius
of the cavity. The rigid-elastic wave front is at �=�w. Plastic
yielding occurs at the elastic-plastic interface �=�i. The remote
boundary at infinity is stress free.
alized cavity expansion velocity
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m =
Ȧ

�E/�0

�4�

is the ratio between the cavity expansion velocity �Ȧ� and the
axial wave speed in a long elastic rod ��E /�0�.

Material response is modeled by the elastoplastic J2 Mises solid
which centers on the effective stress �e, given here by

�e = �� − �r. �5�

Notice that definition �5� remains valid for the Tresca effective
stress. The elastoplastic J2 flow theory formulation can be written
in the standard hypoelastic form

D = �1 + �

E
��̌ − � �

E
��I · · �̌�I +

3�̇p

2�e
S , �6�

where D is the Eulerian strain rate, �–the Cauchy stress tensor,
�̌–the Jaumann stress rate, S–the stress deviator, I–the second-
order unit tensor, �–Poisson’s ratio and �p–the effective plastic
strain and a known function of �e. The latter is suitably nondi-
mensionalized, with respect to E, to obtain from �5�,

� = �� − �r. �7�

The active components of the Eulerian strain rate become, for the
spherical symmetric field,

�̇r =
dṘ

dR
= � Ȧ

A
�dV

d�
�̇� = �̇� =

Ṙ

R
= � Ȧ

A
�V

�
. �8�

Consequently, in the absence of material spin, the tensorial con-
stitutive relation �6� separates into just two scalar equations,
namely, with the aid of �2�,

V� = �V − �����r − 2����� − �p�� , �9�

V

�
= �V − ����− ��r + �1 − ������ +

1

2
�p�	 . �10�

Finally, conservation of matter requires that

�̇

�
+ �̇r + 2�̇� = 0, �11�

or, on account of �8� and �2�,

�V − ��ln�� �

�0
� + V� + 2

V

�
= 0. �12�

To sum it up, we have the four governing equations �3�, �9�,
�10�, and �12�, with four unknowns ��r ,�� ,V ,�� whose depen-
dence on � should be determined. Integration of that system is
carried from the cavity’s wall where

� = 1: V = 1 �13�

to the rigid-elastic interface �wave front� �=�w where we have �
=�0, as a stress free condition, and both velocity and stresses
should vanish �Fig. 1�. Also, Pc=−�r��=1� denotes the nondi-
mensionalized �Pc= pc /E� cavitation pressure �Fig. 1�, determined
by the solution. Notice that the small strain elastic field solution
dictates the location of the rigid-elastic interface �wave front� at

�w=CE/ Ȧ=1/M, where CE denotes the linear elastic dilatation
wave speed, and M can be regarded as the subsonic cavity expan-
sion Mach number �Durban and Masri �14��, defined by

M2 =
�1 + ���1 − 2��

1 − �
m2 = � Ȧ

CE
�2
with
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CE =� �1 − ��E
�1 + ���1 − 2���0

. �14�

A subsonic expansion field is, therefore, possible under the con-
straint

m 	� 1 − �

�1 + ���1 − 2��
, �15�

where the upper bound on m is always greater than one.
In this formulation, the effective plastic strain �p is a given

function of �, which describes plastic strain-hardening �or soften-
ing�. For solids with a definite yield point, plastic response is
activated at the elastic-plastic interface �=�i, where �p vanishes,
with 1	�i	�w �Fig. 1�. However, for strain-hardening response,
like the Ramberg-Osgood power-hardening law ��p=K�
�, the
plastic branch is active within the entire deformation zone. For
elastic/perfectly plastic response �p is not known a priori and an
extra algebraic equation is obtained from �7�, in the post-yield
range,

�� − �r = �y , �16�

where �y is the nondimensional yield stress ��y =Y /E with Y
denoting the yield stress�. For that particular model, the elastic-
plastic interface �=�i appears at the location where � reaches the
value of �y.

Inserting �9� and �10� into �12� and integrating over � we get

� = �0e−� with � = �1 − 2����r + 2��� , �17�

using �=�0 and �r=��=0 as stress free conditions at the wave
front.

The effective plastic strain goes to infinity at the cavity’s wall
�Durban and Masri �14�� so when strain-hardening is present both
the effective stress and �� are not bounded there, hence the den-
sity reduces to zero at the cavity’s wall. However, for elastic/
perfectly plastic solids, � reaches a finite value at the wall because
�� is bounded by relation �16�,

��� = 1� = �0e�1−2���3Pc−2�y�. �18�
Next, we subtract �10� from �9� and integrate the equation thus

obtained. This gives

V = ��1 − e−�� with � = �1 + ����� − �r� + 3
2�p, �19�

accounting for the conditions that V , �r, and �� should vanish at
the wave front. Substituting the velocity �19� back in �10� gives


− ��r + �1 − ���� +
1

2
�p��

=
1

�
�1 − e�� . �20�

Similarly, with the aid of �9�, �17�, and �19�, the equation of mo-
tion �3� becomes

�r� +
2

�
��r − ��� = m2�2��r − 2��� − �p��e−�−2�. �21�

Equations �20� and �21� should be solved for the radial profiles of
the stresses �r and �� that develop in the material, with � and �
defined in �17� and �19�. A further simplification of �20� and �21�
is possible upon elimination of �� with the aid of the effective
stress relation �7� resulting in two equations for �r and �.

Durban and Masri �14� have given an exact closed-form solu-
tion to the problem of dynamic spherical expansion in an incom-
pressible Mises solid, for arbitrary strain hardening or softening,
along with numerical solutions of dynamic expansion in com-
pressible Mises solid, that include high cavity expansion veloci-
ties. That analysis is a special case of a more comprehensive treat-
ment of dynamic spherical cavitation in a Drucker-Prager

material.
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3 The Compressible Strain-Hardening Solid
A simpler version of the two governing equations �20� and �21�

can be derived by introducing the total strain �=�+�p, which is a
known function of �, using �7� and putting =1−2� for the
elastic-compressibility parameter. It follows that �20� and �21� can
be written as

�r� +


2
�� +

1

2
�� =

1

�
�1 − e

− 
2

�+ 3
2

�� , �22�

�r� −
2

�
� = m2�2��r� + �� − ���e−3�r−�−3�. �23�

These equations admit exact closed form solutions, in terms of
quadratures, for the cavitation pressure with any hardening char-
acteristic, when the material is incompressible �=0� �Durban and
Masri �14��

Pc =�
0

�
� d�

e
3
2

�

− 1

+
3

2
m2, �24�

and in quasi-static expansion �m=0� �Durban and Baruch �18��

Pc =�
0

� � d�

d�
+ ��d�

e
3
2

�− 
2

�

− 1 + 2�

. �25�

These exact relations simplify to the approximate, yet practical
��y �1�, solutions for elastic/perfectly plastic response, derived
by Hill �6,15�.

Radial profiles of density, velocity, and stresses ��r and �� for
cavitation in four metals, in quasi-static �m=0� and dynamic �m
=0.35� expansions, are illustrated in Figs. 2–5. The curves have
been obtained numerically from Eqs. �22� and �23� for the follow-
ing metals:

Aluminum7075-T6: �p=3.94·1021�10.9, �=0.32,
�0=2700�kg/m3�, E=72.4�GPa�.

Steel D6AC: �p=2.52·1055�28, �=0.27, �0=7800�kg/m3�,
E=213�GPa�.

Stainless steel: �p=5.78·104�3, �=0.30, �0=7800�kg/m3�,
E=206�GPa�.

TitaniumB120VCA: �p=2.4·1029�16.5, �= 1
3 ,

�0=4400�kg/m3�, E=106�GPa�.
The expected tendency of � towards infinity, and of � towards

zero, upon approaching the cavity’s wall, are not seen in Figs. 2–5
because the boundary layer near the wall �Durban and Masri �14��
is extremely small for these metals. It can be seen that from a
macroscopic point of view, the radial profiles of density, velocity,
and stresses, for given cavity expansion velocity m, remain similar
for different metals, and that the effective stress � is hardly sen-
sitive to the cavity expansion velocity. While for the quasi-static
expansion �m=0� the wave front is at infinity, for dynamic expan-
sion �m=0.35� the wave front location is obtained from �w

=1/M, using �14�. The wave front locations, along with the cavity
expansion velocities �4� and the cavitation pressures Pc=−�r��
=1�, in dynamic expansion with m=0.35 for the four metals are:

�w=3.42, Ȧ=1812�m/s� , Pc=0.155 �aluminum�,

�w=3.20, Ȧ=1830�m/s� , Pc=0.152 �steel�,

�w=3.31, Ȧ=1800�m/s� , Pc=0.164 �stainless steel�,

�w=3.50, Ȧ=1718�m/s� , Pc=0.167 �titanium�.

For quasi-static expansion �m=0� the velocity profile �V� de-

scribes a mathematical limit and the respective cavitation pres-
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7075-T6.

less steel.
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sures for the metals are: Pc=0.0281 �aluminum�, Pc=0.0314
�steel�, Pc=0.0394 �stainless steel�, and Pc=0.0440 �titanium�.
The latter results can also be calculated from the exact relation
�25�.

Motivated by the exact solutions �24� and �25� and by recently
available studies �Forrestal et al. �11�; Forrestal et al. �12�; Forr-
estal et al. �9�; Jones and Rule �13�� that suggest a parabolic
dependence of the dynamic cavitation pressure on cavity expan-
sion velocity, and recalling that in many practical situations m2

�1, we seek a solution of �22� and �23� by expanding � and �r in
powers of m, namely

� = �0 + m2�1 + ¯ , �26�

�r = �r0 + m2�r1 + ¯ , �27�

where �0 ,�1 ,… ,�r0 ,�r1 ,… are functions of �. It should be men-
tioned that the linear terms do not appear in expansions �26� and
�27� because the equations for the first-order O�m� do not depend
on the solution of the zeroth order. A support to this argument can
be deduced from the exact solution for cavitation pressure, for the

Fig. 5 Radial profiles of essential field variables for a com-
pressible strain-hardening Mises solid. Results are for TI
B120VCA.

Fig. 6 Variation of cavitation pressure Pc with expansion ve-
locity m for four metals. The different markers represent the
Fig. 2 Radial profiles of essential field variables for a com-
pressible strain-hardening Mises solid. Results are for AL
Fig. 3 Radial profiles of essential field variables for a com-
pressible strain-hardening Mises solid. Results are for ST
D6AC.
Fig. 4 Radial profiles of essential field variables for a com-
pressible strain-hardening Mises solid. Results are for Stain-
second order approximation „46….
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four metals mentioned previously, obtained numerically from Eqs.
�22� and �23� and illustrated by curves in Fig. 6.

Inserting �26� and �27� into �22� and �23� and expanding in
powers of m2 results in the zeroth-order system

�r0� +


2
�0� +

1

2
�0� =

1

�
�1 − e

− 
2

�0+ 3
2

�0� , �28�

�r0� −
2

�
�0 = 0, �29�

where �0 is the value of the total strain at �=�0 ��0=�0
+�p��0��. Thus, from �26� we deduce the power expansion for the
total strain

� = �0 + m2�1 + ¯ , �30�

where

�1 = �0�1 with �0 =
d�0

d�0
= 1 +

d�p��0�
d�0

. �31�

Similarly, the second-order �m2� system obtained from the
power expansion of �22� and �23� is

�r1� +


2
�1� +

1

2
��0�1�� = −

1

�
H0�1, �32�

�r1� −
2

�
�1 = �2I0, �33�

where

H0 =
1

2
�3�0 − �e

3
2

�0− 
2

�0
, �34�

I0 = ��r0� + �0� − �0��e
−3�r0−�0−3�0. �35�

Higher order pairs of equations can be constructed along similar
lines, here however, we shall limit the analysis to a second order
approximation under the assumption that m2�1. This assumption
is of practical significance because, for example, under cavity ex-

pansion velocity of Ȧ=1�km/s�, which represents the barrel ve-
locity of an M-16 rifle or striking velocity of deep penetration
depth projectile �Nelson �2�; Levi �3��, we get m20.04 for all
four metals mentioned before. Recall that in applying the dynamic
spherical cavitation model to penetration analysis the expansion
velocity is not greater than the penetration velocity because of the
dependence on the local penetrator slope �Jones and Rule �13��,
and that during the penetration process the projectile velocity de-
creases.

To solve the zeroth-order equations �28� and �29� we substitute
�r0 from �29� in �28� to obtain the useful differential relation

2
d�

�
= − J0d�0, �36�

where

J0 =
�0 + 

e
3
2

�0− 
2

�0
− 1 + 2�0

�37�

is a function of �0 only. Relation �36� is now combined with �29�
to give

d�r0 = − J0�0d�0. �38�

Recalling that at the cavity ��=1� �0→� and �r0=−Pc0 �the
zeroth-order cavitation pressure, which is the quasi-static cavita-
tion pressure�, we integrate �36� and �38� to arrive at the

quadrature-type solution for the quasi-static expansion
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� = eK0 �r0 = − Pc0 +�
�0

�

J0�s�sds , �39�

where

K0 = 1
2�

�0

�

J0�s�ds . �40�

At infinity �0 and �r0 vanish, so from the second of �39� we find
the zeroth-order cavitation pressure

Pc0 =�
0

�

J0��0��0d�0. �41�

Solutions �39� and �40� transform � to �0 as the independent
variable and give the exact cavitation pressure �41� for quasi-static
expansion in a compressible Mises solid with any hardening or
softening characteristics. The same value of Pc0, as indicated ear-
lier �25�, has been obtained by Durban and Baruch �18� as the
limit of the cavity expansion process under monotonously increas-
ing internal pressure.

Turning to the second-order system �32� and �33�, we can elimi-
nate �r1 between the two equations to construct a single equation
for �1, viz

1

2
��0 + ��1� + �1

2
�0� +

H0 + 2

�
��1 = − �2I0, �42�

which can be integrated in terms of quadratures. However, the
solution for �1 turns out to be complicated, offering no new in-
sight, and is less effective by comparison with a numerical solu-
tion. Now, Figs. 2–5 suggest the observation that the effective
stress � is hardly sensitive to the cavity expansion velocity m. For
the incompressible material �=0� that observation is accurate
over the entire field �Durban and Masri �14��. This observation is
also accurate for elastic/perfectly plastic response within the plas-
tic field where ���y. In this spirit we proceed with the assump-
tion that in �33� 2

� ��1���2�I0� leading to the approximate solution
for �r1

�r1 = − Pc1 +�
�0

�

�exp�− 3�0 − s − 3�r0 + 2K0��

�J0s −  + �0�ds , �43�

where Pc1 is the second-order coefficient in the power expansion
of the cavitation pressure

Pc = Pc0 + m2Pc1 + ¯ , �44�

and the integrand in �43� is understood to depend on the integra-
tion variable s. Thus, the second-order coefficient in the power
expansion of the cavitation pressure is simply

Pc1 =�
0

�

�J0�0 −  + �0��exp�− 3�0 − �0 − 3�r0 + 2K0��d�0,

�45�

and upon inserting this result, along with �41�, in �44� we obtain
the second-order approximation

Pc = m2�
0

�

�J0�0 −  + �0�

�exp�− 3�0 − �0 − 3�r0 + 2K0��d�0

+��

J0�0d�0. �46�

0
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As a quick check we substitute in �41� and �45� the value of
=0 to see whether we recover the incompressible Mises result
�24�, obtained by Durban and Masri �14�. Now, it is a matter of
ease to show, by �37� and �41�, that for =0

J0 =
�0

e
3
2

�0
− 1

Pc0 =�
0

�
�0d�0

e
3
2

�0
− 1

. �47�

Similarly, from �40�

K0 = − 1
3 ln�1 − e

− 3
2

�0� , �48�

which is now substituted in �45� to obtain the exact �24� second-
order coefficient Pc1 as a Beta function integral

Pc1 =�
0

�
e−3�0d�0

�1 − e
− 3

2
�0� 2

3

=
2

3�
0

1
sds

�1 − s�
2
3

=
2

3

��2��� 1
3�

��2 + 1
3�

=
3

2
,

�49�

where � denotes the Gamma function and s is here defined by s
=exp�− 3

2�0�.
Just to give an example, the values of Pc1 from �45� for the four

metals of Figs. 2–5, are: Pc1=1.402 �Pc0=0.0281� for the alumi-
num, Pc1=1.373 �Pc0=0.0314� for the steel, Pc1=1.408 �Pc0
=0.0394� for the stainless steel and Pc1=1.395 �Pc0=0.0440� for
the titanium. That data suggests that Pc1 is much larger than Pc0
and that Pc1 is bounded by 3/2.

Variation of the cavitation pressure Pc with expansion velocity
m for the four strain-hardening metals is displayed in Fig. 6. The
different types of markers show the second-order approximation
�46� while the curves show the exact solution obtained numeri-
cally from Eqs. �22� and �23�. It may be concluded that for the
practical range of m	0.15 the deviation of the approximation
from the exact solution is less than 10%. Also notice that it ap-
pears that the approximate solution is an upper bound on the exact
solution. From the exact solutions it can be seen that the cavitation
pressure has no linear term in m, which supports the power ex-
pansions �26� and �27�.

4 The Compressible Elastic/Perfectly Plastic Solid
An instructive and important example is provided by the

elastic/perfectly plastic characteristic where

� = � for � � �y and � � �y for � � �y . �50�
Expansion �26� is now not applicable within the plastic zone,
neither is relation �31� since after initial yield �1�0 and �0 from
�31� becomes unbounded.

The quasi-static elastic field is governed by the zeroth-order
system �28� and �29� with �0=�0. The appropriate solution is
again given by the integrals of �36� and �38� with

J0 =
1 + 

e
3−

2
�0

− 1 + 2�0

. �51�

Thus, for �0��y and J0 given by �51�, the exact zeroth-order
solution in the elastic zone is

� = �i0 exp�1

2�
�0

�y

J0�s�ds� , �52�

�r0 = −�
0

�0

J0�s�sds , �53�

where �i0 is the location of the elastic-plastic interface for quasi-
static expansion, to be determined shortly. Notice that �i0 is the

leading term in the interface location power expansion
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�i = �i0 + m2�i1 + ¯ . �54�

For sufficiently small elastic strains ��y �1� it is permissible to
approximate �52� and �53� by the leading terms

�3 =
�y�i0

3

�0
=

C0

�0
�r0 = −

2

3
�0, �55�

which are identical with the well-known linear elastic approxima-
tion �Durban and Masri �14�� where C0 is the integration constant
in that solution.

The exact zeroth-order equations for the perfectly plastic field
are, by �28� and �29�,

�r0� +
1

2
�0� =

1

�
�1 − e

− 
2

�y
e

3
2

�0� , �56�

�r0� =
2

�
�y , �57�

with the immediate exact solution �recalling that at the cavity’s
wall �r0=−Pc0 and �0→��

�r0 = 2�yln��� − Pc0, �58�

� = 
1 − �1 − 2�y�e

2

�y
e

− 3
2

�0�− 1
3�1−2�y�

. �59�

The exact elastic-plastic interface location �i0 �where �0=�y� can
be found from �59�, but for all practical purposes �y �1 so we
recover the well-known approximate location of the elastic-plastic
interface �Hill �15��

�i0 = �3�1 − ���y�−1/3. �60�

Thus, from �55�, the integration constant C0 is now given by
�3�1−���−1, in agreement with the value C=2/3 obtained by Dur-
ban and Masri �14� for the incompressible Drucker-Prager solid.
Equating the approximate elastic result �55� with the plastic result
�58�, for the radial stress at the interface location �60�, gives the
zeroth-order cavitation pressure, which coincides with the ap-
proximate quasi-static cavitation pressure �Hill �15��

Pc0 =
2

3
�yln
 1

3�1 − ���y
� +

2

3
�y . �61�

By equating the exact elastic �53� and plastic �58� solutions, for
the radial stress at the exact elastic-plastic interface, from �59�,

�i0 = 
1 − �1 − 2�y�e
−3

2
�y�− 1

3�1−2�y�

, �62�
we find the exact cavitation pressure for spherical quasi-static ex-
pansion in an elastic/perfectly plastic compressible Mises solid

Pc0 =
2�y

3�1 − 2�y�
ln
1 − �1 − 2�y�e

−3
2

�y�−1

+�
0

�y �1 + ��0d�0

exp� 3−
2 �0� − 1 + 2�0

. �63�

This exact solution can be also obtained as a particular result from
�41� for the elastic/perfectly plastic case, and can be reduced to
the approximate solution �61� under the practical assumption �y
�1. A second-order expansion of �63� in powers of �y gives the
relation

Pc0 =
2�y

3
�1 + �1 + 2�y�ln
 2

3� + 1��y
� +

�3 − ��5 + 1�
8� + 1�

�y	 ,

�64�

which explains the validity of Hill’s solution �61� for �y �1. No-
tice that �59�, and hence also �62�, can be obtained as particular

results from solutions �39� and �40�. In fact, the location �i0 for
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solids with definite yield point can also be calculated using �0
=�y as the lower limit in �40�.

Now, we turn to a derivation of the second-order coefficient Pc1
in the cavitation pressure power expansion �44�. To this end, we
note that for the perfectly plastic field the second-order equation
�33� takes the form

�r1� = �2��r0� − �0��e
−3�r0e−�ye−3�0, �65�

where the dependence of �r0 and �0 on � is given by �58� and
�59�. By using the assumption �y �1 we get from �59� the ap-
proximate relation

�0 = − �y +
2

3
ln� �3

�3 − 1
� , �66�

from which we recover �60� with �0=�y. Substituting �58�, with
the aid of �61� and �66� into �65� we get

�r1� = 2e4�y
 2

3� + 1��y
�2�y

�−5−6�y��3 − 1��1 + �y��3 − 1�� .

�67�

Integrating this equation from �=1 �where �r1=−Pc1� to �=�i,
leads to an expression for Pc1 that depends on the value of �r1 at
the elastic-plastic interface. For �=� equations �22� and �23� re-
duce to the elastodynamic equations and by using the small strains
assumption these equations can be linearized and solved, as dis-
cussed by Durban and Masri �14�. Hence, for the compressible
elastic/perfectly plastic Mises solid, under the assumption m2�1,
the expression for �r at the elastic-plastic interface is

�r��i� = −
2

3
�y −

�y�i
2�3 − �2

3� + 1�
m2 +

1

3
�y�i

3��3 − �5

� + 1�3 m3 + ¯ .

�68�

Substituting the power expansion for the interface location �54�
into �68� gives

�r��i� = −
2

3
�y −

�y�i0
2 �3 − �2

3� + 1�
m2 +

1

3
�y�i0

3 ��3 − �5

� + 1�3 m3 + ¯ .

�69�

Notice that the first term coincides with the perfectly plastic quasi-
static solution �58� together with �61�, at the elastic-plastic inter-
face �60�, so the expression for �r1 at the elastic-plastic interface
is simply

�r1��i0� = −
�y�i0

2 �3 − �2

3� + 1�
= − �12� + 1��y�1/3
 �3 − �

3� + 1��2

.

�70�

Substituting this expression, and using again the assumption �y
�1 in the integration of �67�, we obtain an elegant approximation
for Pc1

Pc1 =
3

2
−

1

3
�2

3
�2/3�5 + 21�

� + 1�5/3 �y
1/3, �71�

which reduces to the well-known result, Pc1=3/2, for elastic-
incompressibility �=0�. It is evident from �71� that Pc1 is less
than 3/2 for compressible solids regardless of the value of the
yield stress, and decreases with increasing  or �y. Combining
�61� with �71� gives a useful approximate cavitation pressure �44�
for dynamic spherical cavity expansion in an elastic/perfectly

2
plastic compressible Mises solid, valid for �y ,m �1,
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Pc =
2

3
�y ln
 2

3� + 1��y
� +

2

3
�y

+ 
3

2
−

1

3
�2

3
�2/3�5 + 21�

� + 1�5/3 �y
1/3�m2. �72�

It is worth mentioning that �72� reduces to �61� for quasi-static
expansion �m=0�, while for the incompressible Mises solid �
=0� we recover the solution derived by Hill �6�

Pc =
2

3
�y ln� 2

3�y
� +

2

3
�y +

3

2
m2. �73�

Variations of the cavitation pressure Pc with expansion velocity
m for an elastic/perfectly plastic compressible Mises solid ��y

=0.01� are displayed in Fig. 7. The different markers show the
second-order approximation �72� while the curves show the exact
solution obtained numerically from Eqs. �22� and �23�, using the
special relations for elastic/perfectly plastic solids �50�. It may be
concluded that for m	0.2 the deviation of the approximation
from the exact solution is less than 10% and appears to decrease

Fig. 7 Variation of cavitation pressure Pc with expansion ve-
locity m for elastic/perfectly plastic compressible Mises solids
„�y=0.01… with several values of Poisson’s ratio. The different
markers represent the second-order approximation „72….

Fig. 8 Variation of cavitation pressure Pc with expansion ve-
locity m for elastic/perfectly plastic compressible Mises solids
„�y=0.01…. The different markers represent the third-order ap-

proximation „79….
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with increasing �. A similar behavior can be shown for other
values of �y. Notice also that the approximate solution appears to
be an upper bound on the exact solution.

In Eq. �69� the third term is of order m3. It appears, therefore,
that the approximation of the cavitation pressure can be improved
with the third-order term

�r = �r0 + m2�r1 + m3�r2 + ¯ �74�

hence, we turn to a derivation of the third-order coefficient Pc2 in
the cavitation pressure power expansion

Pc = Pc0 + m2Pc1 + m3Pc2 + ¯ . �75�
Using Eq. �23� for the perfectly plastic field we note that the
third-order �m3� system leads to the simple solution

�r2 = Const. �76�
Equating �76� with the third term in �69�, at the elastic-plastic
interface, leads to the expression

�r2 =
1

3
�y�i0

3 ��3 − �5

� + 1�3 . �77�

Now, with the aid of �60�, we get

Pc2 = −
2

9
�
 �3 − �

� + 1��5

, �78�

which does not depend on the yield stress and is always negative.
Combining �61� with �71� and �78� we obtain a useful approxima-
tion, valid for �y ,m2�1,

Pc =
2

3
�y ln
 2

3� + 1��y
� +

2

3
�y

+ 
3

2
−

1

3
�2

3
�2/3�5 + 21�

� + 1�5/3 �y
1/3�m2

−
2

9
�
 �3 − �

� + 1��5

m3. �79�

Expression �79� reduces to �61� for quasi-static expansion �m
=0�, while for the incompressible Mises solid �=0� we recover
�73�. Notice that since the term of order m3 is always negative the
second-order approximation provides an upper bound as we have
already mentioned. By subtracting �73� from �79� we can isolate

Fig. 9 Variation of cavitation pressure Pc with expansion ve-
locity m for four metals. The different markers represent the
modified solution „80….
the influence of the elastic-compressibility, which is always nega-
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tive and coupled with the yield stress and dynamic expansion
velocity.

For example, with =1/3 ��=1/3� and �y =0.01 we have
Pc0=0.0327, Pc1=1.244 and Pc2=−0.726; while with =1/2 ��
=1/4� and �y =0.01 we find Pc0=0.0320, Pc1=1.172 and Pc2=
−0.563. If =1/3 ��=1/3� and �y =0.0025 then Pc0=0.0105,
Pc1=1.338 and Pc2=−0.726. That data suggests that Pc1 is much
larger than Pc0 but of the same order as Pc2.

Variations of the cavitation pressure Pc with expansion velocity
m are illustrated in Fig. 8. The different markers show the third-
order approximation �79� while the curves show the exact solution
obtained numerically from Eqs. �22� and �23� using the special
relations for elastic/perfectly plastic solid �50�. By comparison
with Fig. 7 it can be seen that the third-order approximation �79�
is in much better agreement with the exact solution than the
second-order approximation �72�.

Returning to the expression for Pc2 in �78�, recalling that it is
always negative and does not depend on the yield stress, we sug-
gest to add it, as it stands, to the strain-hardening approximate
solution �46�, to improve the accuracy of the cavitation pressure
prediction. Thus, we arrive at the modified expression

Pc = m2�
0

�

�J0�0 −  + �0�

�exp�− 3�0 − �0 − 3�r0 + 2K0��d�0

+�
0

�

J0�0d�0 −
2

9
�
 �3 − �

� + 1��5

m3. �80�

Application of �80� to the four strain-hardening metals is illus-
trated in Fig. 9. The different types of markers show the modified
solution �80� while the curves show the exact solution obtained
numerically from Eqs. �22� and �23�. By comparison with Fig. 6 it
can be seen that the modified relation �80� improves the approxi-
mation, especially for high values of m.

Recalling that the expression for the cavitation pressure, with
any strain-hardening relation �80�, is much more cumbersome
than the expression for elastic/pefectly plastic response �79�, we
suggest to use the latter to include the strain-hardening effect by
the following procedure. From expression �79� it can be con-
cluded that the effect of the yield stress is more dominant in Pc0
than in Pc1, while it does not have any effect on Pc2. Also, it
appears that Pc1 is less than 3/2 for compressible solids regardless

Fig. 10 Variation of cavitation pressure Pc with expansion ve-
locity m for four metals. The different markers represent the
equivalent solution „82….
of the value of the yield stress. Therefore, we define the equivalent
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cavitation yield stress ��y
c� by equating the quasi-static cavitation

pressure solutions �25� and �61�, obtained by Durban and Baruch
�18� and Hill �15�, respectively,

�
0

� � d�

d�
+ ��d�

e
3
2

�− 
2

�

− 1 + 2�

=
2

3
�y

c�1 + ln
 1

3�1 − ���y
c�	 . �81�

Thus, using �79� along with 1
3

� 2
3

�2/3 159
625 , a simple solution for the

cavitation pressure, which accounts for strain-hardening, is pro-
posed as the equivalent solution

Pc =
2�y

c

3 �1 + ln
 1

3�1 − ���y
c�	 + 
3

2
−

159

625

�5 + 21��y
c1/3

� + 1�5/3 �m2

−
2

9
�
 �3 − �

� + 1��5

m3, �82�

which differs from �80� only in the second order coefficient Pc1.
This simple solution reduces to the exact relations �24� and �25�
for dynamic expansion in an incompressible strain-hardening
Mises solid �=0� and for quasi-static expansion �m=0� in a
compressible strain-hardening Mises solid, respectively. Relation
�25� is accurate, so for consistency we need to equate it, in �81�,
with the accurate relation �63�, but in practice ��y

c �1� the simple
approximate solution �61� is sufficient.

We have already calculated, in Sec. 3, the values of Pc0 �LHS
of �81�� for the four metals considered there. Hence, from Eq.
�81�, the equivalent cavitation yield stresses for these metals are:
�y

c =0.00830 �aluminum�, �y
c =0.00971 �steel�, �y

c =0.01280
�stainless steel�, and �y

c =0.01455 �titanium�. For these equivalent
cavitation yield stresses the values of Pc1 for the four metals are:
Pc1=1.247 �Pc2=−0.700� for the aluminum, Pc1=1.190 �Pc2=
−0.602� for the steel, Pc1=1.188 �Pc2=−0.661� for the stainless
steel and Pc1=1.210 �Pc2=−0.726� for the titanium. It is interest-
ing to note that for these four metals and other few examples
�including aluminum 6061-T651, which will be discussed in the
next section� the ratio Pc0 /�y

c is in the range of 3 to 4.
Application of �82� to the four strain-hardening metals is shown

in Fig. 10. The different types of markers show the equivalent
solution �82�, while the curves show the exact solution obtained
numerically from Eqs. �22� and �23�. By comparison with Fig. 9 it
can be seen that the simple relation �82� is much more accurate
than the complex relation �80�.

5 Application to the Problem of Penetration Into
Metal Targets

Applying the well-known technique �Forrestal et al. �11�; Jones
and Rule �13��, of using the dynamic spherical cavitation pressure
along with the Coulomb friction law, to analyze penetration of
axisymmetric rigid projectile into a uniform target, at normal in-
cidence, we use our relation for the cavitation pressure Pc= Pc0
+m2Pc1+m3Pc2 with the definition of m in �4� to derive an ex-
pression for the penetration depth

H =
Mp

2��0
�

0

�s � d�

A0 + A1�2 + A2�3 with � =
Vp

�E/�0

. �83�

Here Mp denotes the penetrator mass, Vp denotes the instanta-
neous penetrator velocity and �s is the nondimensionalized im-
pact velocity, defined by the striking velocity Vs,

�s =
Vs

�E/�0

. �84�

The coefficients Ai, that have the dimension of area, are defined

by

Journal of Applied Mechanics
Ai = Pci�
0

L

�y� + ��y
 y�
�1 + �y��2�i�5−i�/2

dx i = 0,1,2 �85�

where L is the projectile nose length, � is the sliding-friction
coefficient and y=y�x� is the shape function of an axisymmetric
penetrator with 0�x�L, which need to be nose-pointed �y�0�
=0�, must satisfy the condition y��0 and has a base diameter of
d=2y�L�. Notice that in Eq. �85� superposed prime denotes differ-
entiation with respect to x. The expressions for the coefficients Pci
�i=0,1 ,2� are given in �61�, �71�, and �78� for the elastic/perfectly
plastic model, and in �41�, �45�, and �78� for strain-hardening
response. To include the strain-hardening effect by using the
elastic/perfectly plastic model we need to replace �y with the
equivalent cavitation yield stress ��y

c� determined from Eq. �81�.
Notice that while A0 and A1 are positive, A2 is negative and recall
also that for the conical-nose projectile all three coefficients Ai
have simple analytical expressions.

From �85� it can be seen that for any projectile shape and any
metal targets A1���A2� �under the assumption �s

2�1� so it ap-
pears that A2�3 is negligible in comparison with A1�2. Hence, for
all practical purposes, a simple approximation to the penetration
depth �83� is the well-known logarithmic type solution �Poncelet
formula�

H =
Mp

2��0
�

0

�s � d�

A0 + A1�2 =
Mp

4��0A1
ln�1 +

A1

A0
�s

2� , �86�

but here we have the analytical expressions for the coefficients Ai
�i=0,1�, that include the influence of elastic-compressibility and
strain-hardening of the target material. It is interesting to note that
while the third-order correction is vital in improving the accuracy
of the approximated cavitation pressure it is negligible for the
calculation of penetration process. Also, because A2 is negative,
relation �83� provides an upper bound on the Poncelet formula
�86�, but for the incompressible response �=0� relations �83� and
�86� are exactly the same because A2=0.

Employing expressions �83� and �86� to penetration into alumi-
num 6061-T651 targets, by conical, ogival and spherical-nose pro-
jectiles with a nominal mass of Mp=24�gr� �Forrestal et al. �11��,
and by different spherical-nose projectiles �Forrestal et al. �12��,
we compare our results to the penetration depth tests �Figs.
12–17�. The geometry of the penetrators and the aluminum char-
acteristics were taken as suggested in those papers. The aluminum

Fig. 11 Variation of cavitation pressure Pc with expansion ve-
locity m for aluminum 6061-T651. The circle markers represent
the equivalent solution „82… with �y

c=0.00466.
6061-T651 characteristics are: �=1/3, E=68.9�GPa�, �0
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=2710�kg/m3� along with the modified Ludwik equation as the
power-hardening law. We use this power-law relation in our nota-
tion, namely with the total strain �=���� as a known function of
the effective stress �

� = � 0 � � � �y ,

� = � �

�y
1−n�1/n

� � �y , �87�

where n=0.051 is the strain-hardening exponent. Here Y
=276�MPa� denotes the yield stress so �y =0.00401. For this
power-hardening law the quasi-static cavitation pressure, from
�25�, is Pc0=0.0176. To include strain-hardening in the elastic/
perfectly plastic model we calculate the equivalent cavitation

yield stress ��y
c� from Eq. �81� to obtain �y

c =0.00466 �Ȳ
=321�MPa��. For this equivalent value Pc1=1.301 �Pc2=−0.726�
and by applying �82� we show in Fig. 11 the cavitation pressure
for aluminum 6061-T651. The circle markers show the equivalent

Fig. 12 Comparison between cavitation model and penetra-
tion depth tests for conical-nose projectiles „Forrestal et al.
†11‡…. Differences between relation „83… and the logarithmic ex-
pression „86… are hardly noticeable.

Fig. 13 Comparison between cavitation model and penetra-
tion depth tests for ogival-nose projectiles „Forrestal et al.
†11‡…. Differences between relation „83… and the logarithmic ex-

pression „86… are hardly noticeable.
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solution �82� while the curve shows the exact solution obtained
numerically from Eqs. �22� and �23�.

Forrestal et al. �11� used the value of Ȳ =400�MPa� while Yarin

et al. �16� used the value of Ȳ =396�MPa� for their perfectly plas-
tic models. In a later paper �Forrestal et al. �9�� another value is

suggested �Ȳ =340�MPa�� which is closer to our calculation �Ȳ
=321�MPa��. It is obvious that the value of Ȳ influences the
choice of � for best fit with test results. As mentioned by Forrestal
et al. �11,12�, several authors have presented high-speed sliding-
friction data for metals in the range �=0.02 to �=0.2. In this
spirit we have used several sliding-friction coefficients, as illus-
trated in Figs. 12–17. Clearly, other approximations, like the Cou-
lomb friction law assumption and the relation between penetration
and cavity expansion velocities, can be made in using the cavita-
tion model as an engineering model for the penetration problem,
so the selection of � may compensate for the approximations
involved in these assumptions.

From Figs. 12–17 it can be seen that the effect of the friction
coefficient � is more dominant as the striking velocity is higher,
and that its value varies between 0.05 and 0.15. Another conclu-

Fig. 14 Comparison between cavitation model and penetra-
tion depth tests for spherical-nose projectiles „Forrestal et al.
†11‡…

Fig. 15 Comparison between cavitation model and penetra-
tion depth tests for spherical-nose projectiles „Forrestal et al.

††12‡-Table 1‡…
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sion is that the influence of � on the conical and ogival-nose
projectiles is more dominant than on the spherical-nose projec-
tiles. Also, it can be seen that the Poncelet formula �86� is a good
approximation and we do not need to use the more complex rela-
tion �83�, which is an upper bound for the Poncelet formula.

Finally, we present a brief comparison between our cavitation
model and the Rankine ovoid model, developed by Yarin et al.
�16�. The target response for the ovoid model assumed to be in-
compressible, rigid/perfectly plastic with a remote linear elastic
zone. As mentioned before, Yarin et al. �16� used a higher value of

Y for the aluminum 6061-T651 �Ȳ =396�MPa�� as compared to

our suggestion of Ȳ =321�MPa�. Also, Yarin et al. �16� ignored the
friction component acting on the ovoid. In Fig. 18 we show the
penetration test results obtained by Forrestal et al. �11� for conical,
ogival and spherical-nose projectiles as compared with our cavi-
tation model predictions, and with Yarin et al. �16� ovoid engi-

neering approximation. For our cavitation model �86� we used Ȳ
=321�MPa� and �=1/3 �=1/3� along with �=0.15 for the coni-
cal and spherical-nose projectiles and �=0.075 for the ogival-

Fig. 16 Comparison between cavitation model and penetra-
tion depth tests for spherical-nose projectiles „Forrestal et al.
††12‡-Table 2‡…

Fig. 17 Comparison between cavitation model and penetra-
tion depth tests for spherical-nose projectiles „Forrestal et al.

††12‡-Table 3‡…

Journal of Applied Mechanics
nose projectile. For the ovoid model we used Yarin et al. �16�
suggestions for the shear modulus G=28�GPa� and the equivalent

cavitation yield stress Ȳ =396�MPa� along with our suggestions

G=68.9/ �2�1+1/3��25.8�GPa� and Ȳ =321�MPa�. According
to the ovoid penetration depth formula, the difference between the
values of the shear modulus has a negligible influence comparing

to the significant influence of the difference in Ȳ. From Fig. 18 it
can be seen that for low striking velocities the differences are
hardly noticeable while for high striking velocities the differences
are significant. Also, it can be seen that the ovoid model needs to
include a friction component for best fit with penetration depth
tests, especially if the value of the equivalent cavitation yield
stress is found from the procedure suggested in this article. An-
other conclusion is that consideration of the shape of the projectile
nose is vital for improving the accuracy. Here it is worth mention-
ing that Yarin et al. �16� generalized the ovoid theory to describe
penetration of arbitrary axisymmetric projectile nose shapes using
the singularities distribution method.

6 Concluding Remarks
We have presented a detailed analysis of the steady-state self-

similar expansion of a pressurized spherical cavity in an infinite
compressible Mises solid. The analytical study covers only the
case where the expansion velocity is much smaller than the speed
of sound in the solid, or mathematically when m2�1, while nu-
merical solutions can be obtained with much higher expansion
velocities. We have analyzed the strain hardening solid along with
the special case of an elastic/perfectly plastic solid, and demon-
strated an application to metal penetration mechanics. We observe
that the dynamic cavitation pressure has the Bernoulli form only
for small expansion velocities and that the dynamic part of the
cavitation pressure is influenced by elastic-compressibility and
strain-hardening �or yield stress�. It appears that the effect of
elastic-compressibility is more dominant in the dynamic term than
in the quasi-static term while the influence of strain-hardening
�equivalent cavitation yield stress� is more dominant in the quasi-
static term than in the dynamic term.

For the case of strain-hardening solids we obtained an approxi-
mate parabolic type solution along with a modified solution for
the dynamic cavitation pressure. Both solutions reduce to the ex-
act closed form relations for quasi-static expansion and the incom-
pressible Mises solid. The common observation that can be de-
duced from Figs. 6 and 9 is that the second-order approximation

Fig. 18 Comparison between cavitation and Rankine ovoid
models. The different markers represent penetration test re-
sults obtained by Forrestal et al. †11‡ and here Yc represents Ȳ.
�46� and the modified solution �80� are upper bounds for the exact

NOVEMBER 2005, Vol. 72 / 897



solution. By introducing the equivalent cavitation yield stress, de-
fined by Eq. �81�, we suggest an elegant way to include strain-
hardening in the simple elastic/perfectly plastic solution �82�. A
comparison between Figs. 9 and 10 reveals the accuracy of this
approach.

For the case of elastic/perfectly plastic solids we obtained
simple approximate parabolic solution �72�, with a third-order
power expansion approximation �79� for the dynamic cavitation
pressure. From these solutions we can see the influence, of both
elastic-compressibility and yield stress, on every term in the
power expansion. The common observation that can be deduced
analytically, and seen in Figs. 7 and 8, is that elastic-
compressibility lowers the cavitation pressure. Another important
observation is that the Bernoulli type solution �72� is an upper
bound for the exact solution.

We have applied our dynamic spherical cavitation pressure re-
sults to the problem of metal penetration mechanics. The simple
elastic/perfectly plastic model can be used to incorporate strain-
hardening effects by using the equivalent cavitation yield stress
�81� and �82�. Comparison between penetration depth predictions
to penetration tests of conical, ogival and spherical-nose projec-
tiles into aluminum 6061-T651 targets show good agreement. An-
other important result is that while the third order correction is
vital in improving the accuracy of the approximated cavitation
pressure it is negligible for calculations of penetration depth. For
all practical purposes a simple approximation to the penetration
depth is the well-known logarithmic type formula �86�, but here
we have derived analytical expressions for the coefficients Ai �i
=0,1�, that include the influence of elastic-compressibility and
strain-hardening of the target material.
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A Nonlinear Model for Dielectric
Elastomer Membranes
The material and geometrical nonlinearities of novel dielectric elastomer actuators make
them more difficult to model than linear materials used in traditional actuators. To
accurately model dielectric elastomers, a comprehensive mathematical formulation that
incorporates large deformations, material nonlinearity, and electrical effects is derived
using Maxwell-Faraday electrostatics and nonlinear elasticity. The analytical model is
used to numerically solve for the resultant behavior of an inflatable dielectric elastomer
membrane, subject to changes in various system parameters such as prestrain, external
pressure, applied voltage, and the percentage electroded membrane area. The model can
be used to predict acceptable ranges of motion for prescribed system specifications. The
predicted trends are qualitatively supported by experimental work on fluid pumps [A.
Tews, K. Pope, and A. Snyder, Proceedings SPIE, 2003)]. For a potential cardiac pump
application, it is envisioned that the active dielectric elastomer membrane will function
as the motive element of the device. �DOI: 10.1115/1.2047597�

Keywords: dielectric elastomer, membrane, electroactive polymer, electroelastic model,
blood pump
1 Introduction

Artificial blood pump systems have gone through various de-
sign changes and upgrades in response to progress made in our
understanding of mammalian physiology, engineering techniques,
and materials science. Unfortunately, currently available devices
have various limitations; the most common issues are associated
with weight, size, complexity and durability �1,2�. The energy
efficient natural heart functions both as a fluid receptacle and its
own actuation source; the very walls of the heart chambers �ven-
tricles� contract and relax to effect fluid displacement �3�. In con-
trast, mechanical positive displacement pumps use separate actua-
tion sources �such as an electromechanical driver coupled to a
pusher-plate� to drive a fluid-filled passive polyurethane sac via a
diaphragm intermediary. To minimize the problems associated
with these pumps, and move towards a design that captures the
essence of the natural heart, we seek to incorporate electroactive
materials in the device.

Materials that exhibit mechanical displacement in the presence
of an electric field are commonly referred to as being electroac-
tive. This group of materials includes polymer gels, piezoelectrics,
electrostrictives, dielectric elastomers, and others. Here, we study
the dielectric elastomer primarily because of its high strain capa-
bility. The dielectric elastomer actuator is a three-component sys-
tem consisting of a soft dielectric elastomer sandwiched between
two deformable electrodes. In essence, it functions as a very com-
pliant deformable capacitor.

For an artificial pump, we imagine replacing the pneumatically
actuated passive diaphragm with an electroactive membrane. The
membrane in the presence of an external electric field will be
deformed in such a way as to effectively pump blood out of the
receptacle. The electroactive diaphragm will function as the mo-
tive element of the pump, eliminating the need for a separate
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actuation source, reducing some of the bulk associated with the
current device, and thus creating simpler, lighter, more compact
designs.

Simple elastic models for uniform uniaxial deformations of di-
electric elastomer actuators have been formulated by Pelrine et al.
�4� and by Kofod �5�. Here, we develop a method for modeling a
dielectric elastomer membrane that accounts for material nonlin-
earities and large deformations. Although the method is specifi-
cally tailored to inflatable axisymmetric elastomer membranes, the
form is general enough to be extended for other mechanical con-
figurations with minor modifications. For the case of a dielectric
elastomer pump, we assume that electrostatic Coulomb forces be-
tween the compliant electrodes causes thinning of the dielectric
elastomer and that the electrostrictive effects, the relative dis-
placements of the charges of the individual dipoles of the dielec-
tric, are negligibly small �6�. Piezoelectric effects are not present
since the dielectric is isotropic. We employ the theory of elasticity
to characterize the mechanical portion of our model; electrostatic
theory describes the electrical portion. The complete equations of
state for an elastic dielectric can be derived by applying a varia-
tional principle of virtual work or by the more general Cauchy
method analogous to elasticity theory �7�.

2 Electroelastic Stress and Electrical Traction
Incorporating the electrical properties of the system into the

preexisting framework of nonlinear elasticity renders an augmen-
tation of the elastic Cauchy stress. If the augmentation to the
in-plane Cauchy stresses is small compared to the pre-stress, the
electrical force per unit area of the deformable conductors on the
soft dielectric elastomer appears as tractions on the major sur-
faces. These expressions are developed in the following segments.
A comprehensive coverage of electrostatic theory in the presence
of dielectrics can be found in many physics texts, for example,
Landau and Lifshitz �8�, Jackson �9�, and Schwinger �10�. We
consider a dielectric material placed in an electrostatic field cre-
ated by the presence of externally charged conductors. Of marked
interest is the presence and nature of the electric field and not of
the particular configuration of the conductors themselves. In a
dielectric, the relationship between the electric field E and the

electric displacement D is described by
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D = �0E + P , �1�

where �0 is the permittivity of free space and P is the polarization
vector which is a function of the electric field. In vacuum, the
polarization vector vanishes. Our presentation on dielectric elas-
tomers is specific to the case of uniform homogeneous isotropic
hyperelastic materials. In this case, it is customary to assume a
linear electrical constitutive relation between D and E such that
Eq. �1� is given by

D = �E . �2�

where � is the dielectric constant of the material.

2.1 Stress Definition. In elasticity theory, the stress tensor is
expressed as a function of the displacement gradients. If the sys-
tem is conservative, there is a constitutive relation between the
stress and the displacement gradients that can be derived from a
single strain energy potential. Since both mechanical and electri-
cal fields are present in hyperelastic dielectrics, we assume that
the state of stress at a point in the deformed medium is determined
by �1� the local elastic state of the medium and �2� the electro-
static field. In a zero electric field situation, the equations of elas-
ticity are fully recovered.

We defer to Maxwell-Faraday electrostatics to account for elec-
trical effects in the system. Maxwell postulated that a state of
stress exists in the intervening medium between two charged bod-
ies �conductive surfaces� which renders the observable force of
attraction or repulsion between the charged bodies �11�. The well-
known electrostatic Maxwell stress tensor �M is given for a ho-
mogenous isotropic dielectric �11� by

�M = �E � E −
�E . E I

2
, �3�

where I is the identity tensor and electrostrictive effects have been
neglected.

We adopt the postulate that for an elastic dielectric the Cauchy
stress tensor � can be written as the sum of the local elastic stress
tensor and the Maxwell stress tensor �7�

� = �E + �M , �4�

where �E is the local elastic stress tensor given as a function of
the displacement gradients. For a truly coupled response, such as
that occurring in piezoelectric and electrostrictive materials, the
stress �E is derivable from a single internal energy function � that
depends on electrical variables such as the polarization P �or the
electric displacement D� in addition to the deformation gradients
F �7,12�. For an isotropic hyperelastic dielectric, this internal en-
ergy is ultimately reduced to a function of six independent scalar
invariants �I��, where I� is not a unique combination of strain
invariants and electrical invariants �12�. Consequently, the total
stress is

� =
�m

�0

���I��
�F

F + �M , �5�

where �0 is the initial mass density, and �m is the current mass
density. If there is no direct coupling between the polarization and
the mechanical stress, where direct coupling implies that a change
in the polarization effects change in the deformation and vice
versa, then the internal energy is a state function of only three
scalar strain invariants; two independent scalar invariants for an
incompressible material. For the uniform dielectric elastomer un-
der consideration—homogenous, isotropic, incompressible, and
hyperelastic—the elastic stress tensor is derived from a purely
mechanical strain energy function ��I1 , I2�. In this case the total
stress is

� =
�m ���I1,I2�

F + �M . �6�

�0 �F
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2.2 The Electrical Traction. The boundary of the dielectric
merits special consideration particularly when conductors are
present. Under the assumption of electrostatics, the electric field is
zero within a conductor, both the interior and exterior of the con-
ductor are at constant potential, and all the excess charge resides
on the conductor surface. At the boundary between a dielectric
and a conductor, the tangential component of the electric field is
zero and the normal component of the electric displacement vec-
tor is equal to the surface charge density �c of the conductor �8�

n � E = 0 ,
�7�

n . D = �c,

where n is the outward normal vector to the conductor surface.
The electrical force acting on a unit area of the conductor surface
is determined from the Maxwell stress tensor as

n . �M = −
�E2

2
n + n . D � E . �8�

Expressing the electric field in terms of tangential and normal
components �10�

�E2 = ��n � E�2 +
1

�
�n . D�2, �9�

and using the boundary conditions �Eq. �7�� we can rewrite Eq. �8�
as

n . �M = −
�c

2

2�
n + �cE . �10�

Clearly, the tangential components of the force per unit area are
zero, only the normal component of the force per unit area �trac-
tion� remains

n . �M . n = −
�c

2

2�
+

�c

�
n . D =

�c
2

2�
. �11�

The dielectric elastomer is flanked by two compliant electrodes
across its thickness that we assume to be perfectly attached. For
identical parallel conducting surfaces the equal and opposite trac-
tion on each of the conductors �Eq. �11�� pulls the conductors
toward each other into the electric field and squeezes the interven-
ing dielectric elastomer; the soft elastomer thins and increases in
area. The compliance of the soft electrodes means that during the
deformation, the area of the conductors change in unit proportion-
ality to the elastomer area without restraining the elastomers in-
plane motion. At any point in the deformation, we assume a uni-
form surface charge density over the area of the parallel
conductors such that the magnitude is

�c = Q/A , �12�

where Q and A are not constants. When the conductor area in-
creases or decreases the surface charge density changes accord-
ingly. Consequently, to maintain constant potential more charge
will be deposited or removed from the respective conductors. It is
reasonable to assume that the charging response is instantaneous,
that is to say, on the time scale of the mechanical response.

The geometry of parallel conducting surfaces, where the thick-
ness separation is much smaller than the area, and the intervening
dielectric is characterized by a uniform dielectric constant �, leads
to the following reduced expression for the charge �10�

Q =� dA�c = ��1 − �2�
�

d � dA = ��1 − �2�
�

d
A , �13�

where dA is the deformed area element, �1,2 is the constant po-
tential on each conductor, d is the present conductor separation
and A is the current area. Then the traction on each of the con-

ducting surfaces is simply
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n . �M . n =
�c

2

2�
=

���1 − �2�2

2d2 =
�E2

2
. �14�

This is similar to the expression generally obtained for rigid par-
allel plate capacitors where the total force on each conductor is
calculated by multiplying Eq. �14� by the current area. Using Eq.
�4� for the total stress in the dielectric elastomer and Eq. �14� for
the traction on its major surfaces, we can develop an analytical
model of our system from equilibrium equations, geometrical re-
lations, and constitutive equations. It should be noted that here we
focus on the surface tractions since they are the major contributors
in a membrane theory although in-plane Maxwell stresses do ex-
ist.

3 Electroelastic Model

3.1 General Approach. In this section we develop an analyti-
cal model for the inflation of an axisymmetric dielectric elastomer
actuator. We seek to solve the problem of a thin film dielectric
elastomer subject to both mechanical forces in the form of an
external pressure, and an external electric field created by the
presence of two parallel conductors that exert an equal and oppo-
site traction on the elastomer’s major surfaces. Electrostatic theory
and the theory of elasticity are combined to produce a comprehen-
sive model to solve for the response.

Since dielectric elastomers are often prestrained to generate
larger forces, we consider a membrane of initial radius Ri that is
prestretched by an amount �o, and then clamped at radius Ro. The
circular diaphragm is initially flat and no field is present. We then
apply an external electric field and a pressure differential across
the diaphragm. The following formulation presumes an electric
field created by a constant potential difference between the elec-
trodes, typically a thin layer of conductive grease that is assumed
to adhere perfectly to the dielectric in such a way that it does not
impede the motion of the dielectric elastomer. For less compliant
electrodes, mechanical effects may become prominent as the
membrane deforms.

The nonlinear large deformation model of elastic membranes
by Adkins and Rivlin �13� interrelates geometric, constitutive, and
equilibrium equations to produce a system of second order non-
linear differential equations that can be solved given the necessary
system parameters. Using their approach, we can solve for the
case of inflatable dielectric elastomer membranes. The geometric
equations and the form of the equilibrium equations are unaltered.

3.2 Equations of Equilibrium. Given that the membrane
thickness is much less than the radii of curvature and the exten-
sion ratios are greater than unity, we presume that the dielectric
elastomer can be modeled as a membrane. The form of the three-
dimensional equilibrium equations of elasticity theory is appli-
cable for a homogenous isotropic dielectric elastomer where the
purely mechanical stress tensor is replaced with an augmented
Cauchy stress tensor that now has both mechanical and electrical
components �Eq. �4��. In membrane theory, the three-dimensional
equilibrium equations can be expressed with respect to a set of
orthogonal curvilinear coordinates �	1 ,	2� on the middle surface
of a deformed sheet in terms of the principal stress resultants �14�.
After deformation, the major surfaces of the membrane are given
by 	3= ±�3h, where �3 is the thickness extension ratio and h is the
initial membrane thickness. The generalized theory of elastic
membranes by Green and Adkins �15� gives the resultant equilib-
rium equations

n;


� = 0, �15�

n
�b
� + p = 0, �16�
given the relations
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n
� =�
−�3h

�3h

�
�d	3, b
� = a3 . a
,�, �17�

where Greek indices take on the values �1, 2�, n
� are the stress
resultants, �3h is the deformed membrane thickness, b
� is the
second fundamental form of the deformed surface, ai are base
vectors �i=1,2 ,3� ,�
� are the physical components of the stress,
and p is the pressure differential across the membrane. Note that
the electrical traction is equal and opposite on both sides of the
elastomer and hence does not appear in p.

We employ a cylindrical coordinate system such that �� ,	�
= �	1 ,	2�. For an axisymmetric elastic membrane subject to an
external �inflating� pressure differential p, Eqs. �15� and �16� are
reduced to

d�T1��
d�

= T2, �18a�

�1T1 + �2T2 = p , �18b�

where T1 ,T2 are the stress resultants in the longitudinal and lati-
tudinal directions, respectively, defined by

�1 = b11, �2 = b22, b12 = b21 = 0,
�19�

n11 = T1, �2n22 = T2, n12 = n21 = 0,

and �1,2 are the corresponding curvatures. Electrostatic effects
appear explicitly in Eqs. �18� once the stress is defined in terms of
the principal extension ratios, the elastic strain energy function,
the electric field, and the material’s dielectric constant.

3.3 Geometric Principles. We can describe the undeformed
and deformed configurations of the diaphragm as surfaces of ro-
tation. The independent variable of our analysis is the arc length,
s, of the undeformed membrane. The clamped radius Ro is used to
nondimensionalize variables containing a length scale. Inflation
and activation of the membrane leads to a deformed profile as
illustrated in Fig. 1. The profiles depicted in the figure are for
different inflation pressures applied to the membrane. The pre-
stretch �0 is 2.5.

Assuming an incompressible material, the longitudinal, latitu-
dinal, and transverse stretch ratios are given by

�1 =
d

ds
, �2 =

�

R
, �3 =

1

��1�2�
, �20�

Fig. 1 Actual deformed profiles „1/2 symmetry… of an inflated
membrane
and the curvatures by
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�1 =
1

R1
, �2 =

1

R2
, �21�

where  is the meridian curve length in the deformed state, R is
the radius of the undeformed membrane, � is the radial position of
particles of the deformed membrane, and R1 and R2 are the me-
ridional and latitudinal radii of curvature, respectively. The per-
pendicular distance of material points, y, from the symmetry axis
of the inflated actuated membrane is given by

y =� ��1
2 − ��2. �22�

3.4 Material Modeling. The most comprehensive work on
the large elastic deformation of membranes is attributed to Rivlin
�16�. The experimental and theoretical studies of Treloar �17� and
Ogden �18�, respectively, serve to complement Rivlin’s formula-
tion, providing a complete schema for the mechanical modeling of
our system. More specifically our approach is based on Rivlin and
Adkins’ �13� analysis of inflated elastic membranes. We modify
their formulation to account for material stiffening at high strains
�using an Ogden model�, prestretch, and electrical effects. Experi-
mental uniaxial force-extension data was obtained to determine
the necessary material constants for the model. The Mooney-
Rivlin strain energy function gives a first approximation to the
data. However, due to inconsistencies pointed out by Rivlin and
Saunders �19�, and confirmed by Treloar and others, it is not ap-
propriate to assign constants based solely on uniaxial tension tests,
as this will render misleading analytical results. The Ogden strain
energy function provides a more general form that can be com-
fortably applied to uniaxial tension data.

The material assumptions of homogeneity, isotropy, and electri-
cal linearity in our system mean that there is no direct coupling
between the mechanical and the electrical response normally oc-
curring in piezoelectric and electrostrictive materials. Therefore, it
is sufficient that we determine the mechanical portion of the stress
from a purely elastic strain energy function; the electrical portion
is given by the Maxwell stress tensor. Given that the electric field
E3 is uniform in the thickness direction and recalling Eq. �4�, the
contribution to the total stress from the Maxwell stress tensor is
equal to

�
�r�0�

2

2��3h�2 , �23�

where V̄ is the applied voltage, h is the dimensional initial mem-
brane thickness, �0 is the vacuum permittivity, and �r is the rela-
tive dielectric constant.

The Mooney-Rivlin material model is given, along with the
corresponding expression for the total stresses in an incompress-
ible solid by

��I1,I2� = �I1 − 3� + ��I2 − 3� , �24�

I1 = �1
2 + �2

2 + �3
2, �25�

I2 =
1

�1
2 +

1

�2
2 +

1

�3
2 , �26�

ti = �i
2 ��

�I1
− � 1

�i
2

��

�I2
� + pm �

1

C1
�1

2
�r�0� V

�3h
�2� , �27�

where i= �1,2 ,3�, pm is the hydrostatic pressure enforcing the
incompressibility constraint, I1 and I2 are strain invariants, C1 is a
dimensional material constant, � is the dimensionless material
constant. The electrical term is subtracted for i= �1,2� and is
added for i=3. The corresponding set of equations for the Ogden

material model is:
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���1,�2� = � ���1
q1 + �2

q1 + ��1�2�−q1� − 3�
q1

�
+ 
� ���1

q2 + �2
q2 + ��1�2�−q2� − 3�

q2
� , �28�

ti = �i
��

��i
− pm −

1

�1
�1

2
�r�0� V

�3h
�2� �i = 1,2� , �29�

t3 = �3
��

��3
− pm +

1

�1
�1

2
�r�0� V

�3h
�2� = 0, �30�

where q1 and q2 are dimensionless constants, �1 is the dimen-
sional Ogden material constant, and 
 is the nondimensional ratio
�2 /�1. Equations �27�, �29�, and �30� explicitly give the total
stress for the dielectric elastomer in a uniform electric field E3.

According to the Rivlin and Adkins general theory, the surface
tractions on the major surfaces are equal to zero, even though
there is a nonzero external inflating pressure. Since the conductors
on either side of the elastomer produce equal and opposite trac-
tions on the elastomer surfaces, their contribution to the pressure
differential across the membrane is zero. The approximation is,
therefore, sufficiently accurate for the membrane because the ac-
tual surface traction produced from the external mechanical pres-
sure is negligible compared to the meridional and latitudinal
stresses t1 and t2. Thus, we neglect the external mechanical pres-
sure contribution to the surface traction in accordance with the
Rivlin-Adkins assumption and set t3=0.

Mechanical material constants were experimentally determined
for 3M VHB 4910 using both models. We henceforth acknowl-
edge the superiority of the Ogden material model which has been
utilized in both the comprehensive formulation and the analytical
results. In the results, the electrical component of the stresses, t1
and t2, are assumed to be small in comparison to the mechanical
portion of the stresses and neglected. Using Eq. �30�, we can
eliminate the arbitrary hydrostatic pressure pm from t1 and t2.
After deformation, the thickness, initially h, becomes �3h. Thus
the principal resultant stress components T1 and T2 are

T1=−

V2�r�0�1
2�2

2 − 2h2�1��1
q1 + 
�1

q2 − � 1

�1�2
�q1

− 
� 1

�1�2
�q2�

2h2�1�2�1
,

�31�

T2=−

V2�r�0�1
2�2

2 + 2h2�1�� 1

�1�2
�q1

+ 
� 1

�1�2
�q2

− �2
q1 − 
�2

q2�
2h2�1�2�1

.

�32�

The form of the equilibrium equations �Eqs. �18�� is the same for
the passive and active membranes. In the active model, however,
the equations for the stresses T1 and T2 �Eqs. �31� and �32�� are no
longer purely mechanical and, therefore, depend on the electric
field.

3.5 Electroelastic System. Combining Eqs. �20�–�22� and
Eqs. �28�–�32� provides a system of first-order equations that we
solve to yield the stretch ratio �1�s�, the deformed radius ��s�, and
the vertical deflection, y�s� �see Appendix�. The relationship be-
tween the dimensional �denoted by an overbar� and the nondimen-
sional variables are

p =
�1h0

R0
p, T1,2 = �1h0T1,2, ∀̄ = R0

3 ∀ ,

V = ��r�0R0
3�−1/2

V, E = ��r�0R0�−1/2

E , �33�

�1h0 �1h0
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where h0=h / ��0�2 is the prestretched thickness.
The system of equations is iteratively solved by numerically

integrating from 0 to 1 for a specified stretch at the pole and
applied electrical pressure. The inflating pressure is then updated
until the mechanical boundary conditions are satisfied.

4 Results

4.1 Material Characterization. Data from tensile tests on
various samples of 3M VHB 4910 elastomer were used to deter-
mine the corresponding material constants of the two strain energy
functions considered. Nonlinear curvefits of the experimental data
using both the Mooney-Rivlin and the Ogden strain energy func-
tions were obtained. As shown in Fig. 2, the Mooney-Rivlin
model does not accurately capture the material’s behavior for the
entire range of strain. A superior fit of the experimental data is
obtained by the Ogden model. The curve-fit of the experimental
data using both functions is given in Fig. 2, where the points are
the experimental data and the curves are the nonlinear fits.

4.2 Numerical Results. Numerical results are obtained by
simulating the conditions of the active membrane in the prosthetic
pump. We analyze a circular axisymmetric membrane that is pre-
stretched and clamped at its edges, subject to an inflating pressure
and a voltage induced squeeze pressure across the thickness of the
diaphragm. The results have been compiled into pressure-volume
�P-∀ � curves, which are often used to gauge and evaluate the
biomechanical behavior of blood pumps. For pump applications,
volumetric efficiency is of utmost importance within physiologi-
cally reasonable pressure bounds. The membrane is radially pre-
stretched to improve its dielectric performance and endure higher
electric fields as has been reported �1�. We assume a dielectric
constant of 4.7 for 3M VHB �5�.

Figure 3 depicts the P-∀ curves for membranes with various
prestretch values. The results were calculated for a constant di-
mensional applied voltage of 2040 V, resulting in a nondimen-
sional voltage of �1/�o� 8.31e-6, with �1=54.88 kPa, h0
=0.5 mm, and R0=2.22 cm. Within a prestretch range of 1.7 and
2.5, we observe that the pressure required to obtain a certain vol-
ume decreases with increasing prestretch of the material. This
implies that, for the range considered, material softening occurs
with increasing prestretch. This can be explained by studying the
volume as a function of pole stretch �see Fig. 3 inset�. At higher
prestretch values, material stiffening with increasing prestretch is
observed. A prestretch of 1.3 presents an anomaly to the trend at
lower volumes that can be understood by careful consideration of
Fig. 2. There, the force-strain curve becomes increasingly steep up
until approximately a stretch of 1.7. The slope is approximately

Fig. 2 The nonlinear curve-fit of the experimental data for a
sample of VHB 4910. The Mooney-Rivlin fit is a good approxi-
mation only to approximately 300% strain
constant in the stretch range from 1.7 to 2.65 and rises again until
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material failure. It is clear that a higher pressure will be needed to
inflate the membrane while operating in the “steep” regions of the
force-strain curve; conversely, less pressure is required when op-
erating in the “flat” regions of the curve. The observed trend is in
accordance with experimental data obtained by Tews et al. �1� for
inflated dielectric elastomers subject to electric pressure.

The P-∀ relation with �0=2.65 for various applied voltages is
shown in Fig. 4. Activating the membrane causes tangential ma-
terial relaxation and, hence, larger transverse deformation for a
prescribed inflating pressure. The result is an increase in volume
for increasing voltage.

The external electrical source applied to the dielectric mem-
brane can be modeled as either a constant electric field or a con-
stant voltage. In the present situation, it is physically more repre-
sentative to consider a constant applied voltage. Since the material
changes thickness during deformation, it would be difficult to
maintain a constant electric field in practice. This is particularly so
for the membrane configuration under consideration since the
thickness of the material is not constant along radial lines in the
deformed state. As the membrane is clamped around the edges,
once pressurized it tends to be thinnest at the center with increas-
ing thickness towards the edge. The P-∀ curve at a constant elec-
tric field is equivalent in trend to the voltage analysis; that is, an

Fig. 3 Pressure-volume curves „main graph… and volume-
stretch curves „inset… for different prestretch values
Fig. 4 Pressure-volume curves for various applied voltages
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increase in field �voltage� results in an increase in volume for a
given pressure. In assuming a constant electric field, there is a
noticeable quantitative change in the results as depicted in Fig. 5.
A constant electric field predicts higher external pressure values
for a given volume. The electric field values in Fig. 5 are for an
initial dimensionless thickness �before prestretch� of 0.02. In the
figure, the electric fields are calculated using the initial values of
the voltages applied over the entire membrane in its initially flat
configuration. Thus, E=14.1 and E=20.9 correspond to the initial
voltages of V=2.2e-5 and V=3.3e-5, respectively, for a radial
prestretch of 2.65. As the membrane is inflated, the voltages are
varied proportionally with the membrane thickness such that the
electric field is kept constant. Conversely, for a constant voltage,
the field is varied proportionally with the inverse of the membrane
thickness. For ∀=2.23 and a constant V=2.2e-5, the inset in Fig.
5 illustrates the change in the electric field from the pole to the
edge of the prestretched membrane. With a constant applied volt-
age, the field is largest at the center and smallest at the clamped
edge.

Biological requirements dictate that a stroke volume of
70 cm3�∀=6.4� in systole �active contraction of heart ventricles to
eject blood from its chambers� be obtained �3�. Using a radius
within physiological constraints of 4.44 cm, we observe for an

Fig. 5 Comparative pressure-volume curves „main graph… for
various electric fields voltages. Voltage and electric field ver-
sus the arc length from the pole to the edge of the membrane
„inset…

Fig. 6 Pressure-volume curves for different electroded areas

of the total membrane area „A…
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applied voltage of 2.34e-5 and a prestretch of 2.3 �Fig. 6� that a
volume of 6.4 is indeed attainable for reasonable stretch of the
material, i.e., prior to mechanical material failure, experimentally
determined to be in the region of �=3.5�.

As it may not be practical or possible to electrode the entire
surface area in an actual device, we consider the performance of
partially electroded configurations. The P-∀ curves for different
electroded areas of the total membrane area �A� are shown in Fig.
6. There is very little difference for electroded areas greater than
80% of the total area A. Figure 7 depicts the effect of varying the
central circular area of the electroded surface on the elastomer
membrane for a prescribed external pressure of 5.11 ��0=2.3� and
a voltage of 2.34e-5, where % A means percent of the entire
prestretched membrane area that is electroded. The quantitative
measure �∀ /∀0 is the difference ��∀ � between the volume cal-
culated at a given % A and 0% A �unelectroded� divided by the
0% volume �∀0�. The variance is particularly significant between
electroded areas of 25% A and 70% A. Quantitatively, this pattern
is specific to values of the applied voltage and the prestretch.
Figure 7 is simply representative of the observation that there is a
threshold percentage electroded area beyond which very little dif-
ference in ∀ is calculated. The cut-off threshold is consistently
observed for different prestretch values. It should be noted that
electroding near the pole as opposed to electroding from the outer
circumference is better for obtaining higher stroke volumes.

The numerical results can be used to predict regions of insta-
bility as indicated by the descending and ascending portions of the
P-∀ curve ��0=2.3� in Fig. 8, which extend to much larger vol-
umes than Figs. 3–6. For the presently discussed application these
results are useful in determining a reasonable operating range. An
interesting observation can be made in comparing the extended
P-∀ curve for different voltages. For a sufficiently elastic mate-
rial, we can consider the case of an applied voltage of 0.468e-5, at
a pressure of 6.42, to obtain ∀=1.05 �Fig. 8�a��. For the same
pressure we can increase the voltage to 1.97e-5 and “jump” to
∀=36.56 �Fig. 8�b��. Conceptually, for a purely high volume-
oriented application, the above method could be used to achieve
very significant increases in swept volume if the pressure can be
held constant during this transition.

Fig. 7 The % variance in volume versus the % electroded area
of the membrane
Although dielectric elastomers typically have very low force
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output, it is instructive to calculate the output pressure of the
active membrane due solely to the applied voltage. Here, we de-
fine the blocked pressure �Pblocked= PA− PC in Fig. 9� as the re-
duction in pressure differential across the membrane to return to
the zero voltage volume. Figure 9 illustrates a hypothetical work
loop used to obtain the blocked pressure �Pblocked�. For V=0 we
can choose a point, A, having the coordinates �∀A , PA�. While
holding the external pressure constant, an increase in voltage �V
=3.3e−5� leads to an increase in the volume from ∀A to ∀B. To
return to the starting volume ∀A, the pressure decreases to PC. The
difference PA− PC is the blocked pressure; the area of ABC is the
work. In Fig. 10, we observe that the blocked pressure for the
inflatable dielectric membrane is dependent on two parameters:
The initial pressure �or initial volume� and the applied voltage.
The blocked pressure increases with increasing initial volume
�pressure� and increasing applied voltage. Accordingly, to extract
the most mechanical work during activation of the dielectric elas-
tomer, both the initial volume and the applied voltage should be
large.

5 Summary
A nonlinear mathematical formulation for dielectric elastomer

actuators for a potential blood pump application was presented.
This formulation combined Maxwell-Faraday electrostatics and
nonlinear elasticity for axisymmetric membranes, where an aug-

Fig. 8 Stable and unstable regions of pressure-volume curves
for different applied voltages

Fig. 9 Hypothetical work-loop from pressure-volume curves

for different voltages

Journal of Applied Mechanics
mented Cauchy stress was used to define the electroelastic state of
the dielectric elastomer. The elastic behavior of the membrane
was determined by using a purely elastic strain energy function.
The presented model can be extended to include fully coupled
effects by employing an electroelastic function for the energy
stored in the material and obtaining the corresponding stress-
strain-polarization experimental data. For cardiac pump applica-
bility, a stroke volume of 70 cm3 is attainable for reasonable
stretch of the material during activation. Numerical results indi-
cate that increasing the applied voltage increases volume. For a
particular operating range, approximately between a stretch of 1.7
and 3.3, increasing the prestretch leads to material softening
which further increases the calculated volume. There is agreement
between the observed trends determined numerically by this
model and experimental work reported by Tews et al. �1�. A com-
parison of P-∀ results, calculated using a constant voltage versus
a constant electric field, revealed quantitative differences between
the two although the trends were similar. Further, calculations
indicated that there is very little change in the P-∀ behavior of the
membrane for a certain threshold percentage electroded area. This
threshold electroded area can be calculated for a prescribed pre-
stretch and applied voltage. Additionally, we confirmed that al-
though dielectric elastomer actuators are capable of very large
deformations, their purely electrical pressure output is quite low,
ranging from 34 Pa �V=1020 V, ∀i=11.6 cm3� to 268 Pa �V
=3060 V, ∀i=9.6 cm3�.

The model is useful for studying the behavior and effect of
various design variables by conducting parameter studies. The nu-
merical results are used to predict regions of instability that de-
limit a reasonable operating range for the pump. Applying optimi-
zation techniques yields superior designs within the necessary
biomedical constraints.
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Appendix: Final Equations of the Analysis

�1��s� = ��1�s��− 2h2s2�1��1�s�q1 + 
�1�s�q2 − � s

�1�s���s�
�q1

− q1� s

�1�s���s�
�q1
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� s

�1�s���s�
�q2
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� s
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���s� = ��s� �A2�

���s� = ��1�s�3��s��1 −
��s�2

�1�s�2�− p −
1

2h2�1�1�s���s�2�s�V2�r�0�1�s�2��s�2
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�sq2�1�s�−q2��s�−q2 − s−q2��s�q2����1 −
��s�2

�1�s�2� + �s��1�s�q1 + 
�1�s�q2 −
V2�r�0�1�s�2��s�2

2h2s2�1
− sq1�1�s�−q1��s�−q1

− sq2
�1�s�−q2��s�−q2���s��1��s��	��1�s�4��s��1 −
��s�2

�1�s�2���	�s��1�s�q1 + 
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2h2s2�1
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� 2 2 2
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Procedures for the Verification
and Validation of Working Models
for Structural Shells
Shell-like structures are viewed as fully three-dimensional solid bodies that allow the
imposition of restrictions on the transverse variation of displacement vector components
in certain regions. An important practical problem is to select a simplified mathematical
model for a particular application so that the simplifications do not affect the data of
interest significantly. This involves application of expert knowledge aided by virtual
and/or physical experimentation. An example is presented. �DOI: 10.1115/1.2043189�
1 Introduction
The mathematical formulation of a physical problem for pur-

poses of engineering decision making involves application of ex-
pert knowledge. A formulation, comprised of a mathematical
problem characterized by the solution domain, physical proper-
ties, essential and weak boundary conditions, a statement of the
objectives of analysis, and the acceptable error tolerances, is
called a working model. The statement of objectives identifies the
data of interest, such as deformations, stresses, reactions, natural
frequencies, etc. Incorporated in any working model are certain
simplifying assumptions that, on the basis of expert knowledge,
are expected to have negligibly small effect on the data of interest.

In general, it is not possible to guarantee that a working model,
based on a priori information and expert knowledge alone, will
meet the objectives of an analysis. Working models must be
evaluated with the objective to determine whether the simplifying
assumptions incorporated in the model are justified in relation to
the data of interest and the established set of tolerances. Should
the evaluation indicate that a working model is inadequate, a more
comprehensive working model must be chosen and the process
repeated. In practice, this is feasible only when a hierarchic frame-
work is available that makes systematic construction of sequences
of working models possible.

Conceptually, the exact solutions corresponding to a sequence
of working models converge to the exact solution of the state of
the art model �also called supermodel�, i.e., a model that accounts
for all known physical laws that pertain to the system or process
being modeled. An important requirement is that the boundary
conditions and other data must have consistent meaning in the
model hierarchy. The process by which it is ascertained that a
working model satisfies a set of necessary conditions is called
validation. The conditions depend on the objectives of analysis.

With the exception of very highly idealized formulations, the
exact solutions of working models are approximated by numerical
methods, thereby incurring errors of approximation. It is neces-
sary to ensure that the errors of approximation, in terms of the
data of interest, are within acceptable tolerances. The process by
which the computed data are shown to satisfy necessary condi-
tions to be within acceptable tolerances is called verification.

The plan of this paper is as follows: In Sec. 2 physical experi-
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ments performed at Oak Ridge National Laboratory �ORNL� in
the 1970s �1,2� are summarized. The principles that govern the
use of mathematical models for purposes of interpretation of ex-
perimental results are described in Sec. 3. In Sec. 4, the formula-
tion of hierarchic models for shells and thin solids is outlined and
the differences between classical shell models and hierarchic
models are noted. In Sec. 5, the finite element spaces used in the
ORNL and the present investigations are described. In Sec. 6,
questions pertaining to the reliability and usefulness of computed
information from the point of view of the accuracy of prediction
of the responses of structural shells to various loading conditions
are addressed with reference to the first of four models investi-
gated at ORNL. Numerical results are presented in Sec. 7. The
main conclusion, presented in Sec. 8, is that virtual experimenta-
tion, aided by a hierarchic framework of working models, is in-
dispensable in the development of expert knowledge.

2 Experiments
Physical experiments were performed at the Oak Ridge Na-

tional Laboratory in the 1970s �1,2�. The goal of the experiments
was to determine whether the classical model for shells, known as
the Novozhilov-Koiter model, discretized by an assembly of flat
plate elements, is capable of predicting strains in the vicinity of
the intersection of two cylindrical shells. Four carbon steel test
articles were manufactured and instrumented with great care. A
detailed analysis of the first test article, based on hierarchic mod-
eling techniques, is available in �3�.

The first test article was made by welding two carbon steel
pipes then carefully machining the weldment to the test dimen-
sions. The test article was annealed at several points in the ma-
chining process. The experimental arrangement is shown in Fig. 1.
The horizontal part is called the cylinder; the vertical part is called
the nozzle. The length of the cylinder was 39.0 in. �991 mm�. The
length of the nozzle, measured from the point of intersection of
the centerline of the nozzle with the centerline of the cylinder was
19.5 in. �495 mm�. The outside diameter of the cylinder �resp.
nozzle� was 10 in. �254 mm� �resp. 5.0 in. �127 mm��. The in-
tended wall thickness of the cylinder �resp. nozzle� was
0.1 in. �2.54 mm� �resp. 0.05 in. �1.27 mm��.

2.1 Constraint Conditions. As shown in Fig. 1, the right end
of the cylinder was rigidly clamped to a heavy flat plate bolted to
a frame. Small flanges were machined into the ends of the cylin-
der and nozzle to support the seal and the clamping forces. Heavy
loading fixtures were attached on the left end of the cylinder and
the end of the nozzle to provide seal and seating for the applica-
tion of forces.

2.2 Loading Conditions. A total of 13 load cases that in-

cluded pressure loading and axial forces, shear forces, and mo-
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ments were investigated. The forces and moments were applied to
the cylinder and the nozzle through hydraulic rams acting through
load cells. The pressure loading was applied by means of a hy-
draulic fluid. In order to compensate for the weight of the hydrau-
lic fluid, a counterbalancing force was applied to the fixture at the
free end of the cylinder through a cable that is visible in Fig. 1.

For all 13 load cases, the load was applied in increments of
20% of the full load, then decreased to zero again in 20% decre-
ments. In this paper, only one of the loading cases—the pressure
load—is discussed. Additional load cases are discussed in �3�. The
maximum value of the pressure was 50.0 psi �344.8 kPa�.

2.3 Measurements. A total of 322 three-gage �Micro-
Measurements type EA-06-030YB-120, option SE� foil rosettes
were bonded on the inside and outside surfaces by epoxy adhesive
and cured. The gages in the rosettes were arranged in a Y pattern
�i.e., the directions of measurement were 120 deg apart� �1�. De-
tails of the instrumented intersection region is shown in Fig. 2.

The ratio of the resistance change in a strain gage to the La-
grangian strain causing the change is called the gage factor. The
gage factor of each production lot is determined by sample mea-
surements and is given on each package with its tolerance. Typical
tolerances are 0.5–1.0 %. No tolerance data are provided in Ref.
�1,2�.

3 Comparison Between the Results of Experiments
and Finite Element Analyses

In order to interpret experimental data and to allow eventual
generalization of the experimental results, it is necessary to con-
struct a working model. We are concerned only with working
models that have unique exact solutions. We denote the exact
solution of working model m by um. We are interested in some set

Fig. 1 Experimental arrangement „reproduced with permis-
sion from Oak Ridge National Laboratory…

Fig. 2 Detail of test article instrumented with strain gages „re-
produced with permission from Oak Ridge National

Laboratory…
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of measurable data, such as displacements and strains, in specific
points. We will denote these data corresponding to um by
�i�um� , i=1,2 , . . .. Of course, the exact solution is generally un-
known, only an approximation to the exact solution, computed by
the finite element method or some other numerical method, is
known. We denote the approximate solution by ua and the data
computed from ua by �i�ua��i=1,2 , . . . �. The error of numerical
approximation is denoted by ei

num:

ei
num

ª �i�um� − �i�ua� �1�
We denote the experimental measurement corresponding to

�i�um� by �i
�. Associated with �i

� is a random and �possibly�
systematic error in the experimental observation, which is denoted

by ei
exp. We denote the ideal �error-free� measurement by �̄i.

Therefore,

ei
exp

ª �̄i − �i
� �2�

Let us assume that all necessary information concerning the
object of an experiment is available. Then, in any comparison of
experimental data with predictions based on a working model,
three sources of error are present: �i� errors in the working model
itself, including the formulation, variations in dimensions, mate-
rial properties and boundary conditions; �ii� systematic and ran-
dom errors in the experimental observations ei

exp, and �iii� errors
in the numerical approximation of the solution of the mathemati-
cal model ei

num, called the errors of discretization.
We will consider mathematical model m a reasonable represen-

tation of the physical reality of an experiment if

��i�um� − �̄i� � �i��i�um��, i = 1,2,¯ �3�

where �i are prescribed tolerances. Using Eqs. �1� and �2� and the
triangle inequality, we have

��i�um� − �̄i� = ��i�ua� + ei
num − �i

� − ei
exp� � ��i�ua� − �i

�� + �ei
num�

+ �ei
exp� �4�

It is seen that replacement of �i�um� with �i�ua� and �̄i with �i
�

is permissible only if it can be shown that the relative errors
�ei

exp/�i�um�� and �ei
num/�i�um�� are much smaller than �i. If this

condition is not satisfied, then it is possible that large errors in the
mathematical model are obscured by similarly large errors in the
numerical approximation and/or the experimental observations.
Therefore, estimation and control of ei

num and ei
exp are essential.

Remark 3.1. We have assumed that all information necessary
for the formulation of a working model is available. This require-
ment can be difficult to meet. Requirements for validation experi-
ments are discussed in �4�.

Remark 3.2. Successful prediction of the outcomes of one or
more physical experiments does not prove that a working model
will provide correct predictions for other experiments. On the
other hand, failure to correctly predict the outcome of any one
experiment is sufficient evidence for rejection. Therefore, the
grounds for rejection of working models are well established �in
principle�, but it is not possible to prove through experimentation
that a particular working model is correct. With each successful
prediction of the outcome of a physical experiment, the probabil-
ity that the working model will give correct results increases but
guarantees cannot be given. In other words, acceptance of a work-
ing model is tentative, whereas rejection is conclusive.

4 Formulation
The formulation of working models for structural shells is a

large and complicated subject that cannot be discussed in suffi-
cient detail here. Only a brief overview of the main points relevant

to the present investigation is presented.
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4.1 Kinematic Assumptions. A structural shell is character-
ized by a surface, called midsurface xi, and the thickness t. Both
are given in terms of two parameters �1 ,�2

xi = xi��1,�2�, t = t��1,�2�

The indices for �i take on the values i=1,2, whereas the indices
of x range from 1 to 3. Associated with each point of the midsur-
face are three basis vectors. Two of the basis vectors lie in the
tangent plane

bi
�1�

ª

�xi

��1
, bi

�2�
ª

�xi

��2

Note that bi
�1� and bi

�2� are not necessarily orthogonal. The third
basis vector bi

�3� is the cross product of bi
�1� and bi

�2�; therefore, it
is normal to the tangent plane. These are called curvilinear basis
vectors. The normalized curvilinear basis vectors will be denoted
by e� ,e� ,en. The Cartesian unit basis vectors corresponding to the
coordinates xi will be denoted by ex ,ey ,ez. A vector u, given in
terms of the curvilinear basis vectors, denoted by u���, can be
transformed to Cartesian coordinates, denoted by u�x�. The trans-
formation is

u�x� = �R�u��� �5�

where the columns of the transformation matrix �R� are the unit
vectors e� ,e� ,en. The displacement vector components are given
in the following form:

u� ª �
i=0

m�

u��i��,���i���

u� ª �
i=0

m�

u��i��,���i��� �6�

un ª �
i=0

mn

un�i��,���i���

where � is the independent variable in the direction of the normal.
The functions u��i ,u��i ,un�i are called field functions, the functions
�i��� are called director functions. When the material is isotropic
then �i��� are polynomials; when the shell is laminated then �i���
are piecewise polynomials �see, for example, �5,6��. Equation �6�
represents a semi-discretization in the sense that �i��� are fixed;
hence, the number of dimensions is reduced from three to two.
The kinematic assumptions incorporated in a particular shell
model are characterized by the indices �m� ,m� ,mn�. The lowest
member of the hierarchy is the model �1, 1, 0�, which, from the
point of view of kinematic assumptions, is the same as the Naghdi
shell model �7�. The kinematic assumptions of the Novozhilov-
Koiter model �8� are more restrictive than those of the model �1,
1, 0� in that the field functions u��1 and u��1 are constrained to be
linear combinations of the first derivatives of un�0, i.e., there are
only three independent field functions.

The classical development of shell models was strongly influ-
enced by the limitations of the methods available for solving the
resulting systems of equations. The use of curvilinear coordinates
allowed the treatment of shells with simple geometric description,
such as cylindrical, spherical, and conical shells by classical meth-
ods, subject to the assumption that the thickness of the shell is
small in relation to its other dimensions. Such limitations no
longer exist. It is possible to formulate the problem in terms of
either the curvilinear or the Cartesian components of the displace-
ment vector. When the formulation is based on the curvilinear

�resp. Cartesian� components of the displacement vector then we
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refer to the formulation as a shell �resp. thin solid� formulation.
In the following we will be concerned with the thin solid for-

mulation only, that is, the formulation in terms of the Cartesian
components of the displacement field

ux ª �
i=0

m

ux�i��,���i���

uy ª �
i=0

m

uy�i��,���i��� �7�

uz ª �
i=0

m

uz�i��,���i���

Note that, in the case of thin solid models, the kinematic assump-
tions are characterized by the single index m. In other words, the
transverse variation of the three displacement vector components
is approximated by the same functions �i���, i=0,1 ,2 , . . . ,m.

Certain advantages and disadvantages are associated with for-
mulating shell models in terms of the Cartesian rather than the
curvilinear components of the displacement vector. The advan-
tages are that continuity with other bodies, such as stiffeners, are
easier to enforce, and implementation is simpler. The disadvan-
tages are that thin solid formulations cannot be applied to lami-
nated shells unless each lamina is explicitly modeled or homog-
enized material properties are used; the number of field functions
must be the same for each displacement component. For example,
the �1, 1, 0� shell model has five field functions, and the thin solid
model characterized by m=1 has six field functions.

4.2 Linear Working Models for Shells. In the hierarchical
view of working models, the highest �i.e., most comprehensive�
model accounts for all possible nonlinear effects, such as geomet-
ric nonlinearities, material nonlinearities, and mechanical contact.
In the case of beams, plates, and shells, there is an important
subset of model hierarchy where the highest model is the fully
three-dimensional problem of linear elasticity. For this subset, the
accuracy of the exact solution of a working model is understood
to be in relation to the exact solution of the corresponding fully
three-dimensional problem of linear elasticity, not the underlying
problem of solid mechanics. This subset is discussed in this
section.

The vector of strain tensor components corresponding to u is
denoted by ���. The relationship between u and ��� is given by
���= �D�u, where �D� is the differential operator associated with
small strain elasticity. The vector of stress tensor components is
denoted by �	�. The relationship between �	� and ��� is given by
Hooke’s law: �	�= �E����, where �E� is the elastic material stiff-
ness matrix. Traction vectors acting on �
 are denoted by T. The
virtual work of internal stresses is defined as follows:

B�u,v� ª	



��D�v�T�E��D�ud
 �8�

and the virtual work of external forces is defined by

F�v� ª	



F · vd
 +	
�


T · vdS +	



��D�v�T�E��c��d


�9�

where �ct�ª �ct ct ct 0 0 0�T, ct is the coefficient of thermal ex-
pansion and �=��x ,y ,z� is the change in temperature from a ref-
erence temperature.

The energy space is defined by E�
�ª �u �B�u ,u��C���,

where C is some positive constant. The energy norm is defined by
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u
E�
� ª � 1
2B�u,u��1/2 �10�

The generic form of the principle of virtual work is stated as
follows: Find u�E�
� such that

B�u,u� = F�v� for all v � E�
� �11�

Specific statements of the principle of virtual work depend on the
boundary conditions. For details we refer to �9�. In the generic
case, and whenever the prescribed displacement constraints are
insufficient to prevent all possible rigid-body displacements, the
solution of Eq. �11� is unique up to rigid-body displacements.

There is an important difference between the classical shell
models, such as the Novozhilov-Koiter and the Naghdi model,
and the hierarchic shell and thin solid models. In using hierarchic
models, the goal is to approximate the fully three-dimensional
solution; hence, the stress-strain law is that of the three-
dimensional theory of elasticity. In index notation,

	ij = �ij�kk + 2��ij �12�

where 	ij ,�ij are the Cartesian stress and strain tensors, respec-
tively,  and � are the Lamé parameters, and �ij is the Kronecker
delta. Incorporated in the stress-strain relationship of the Naghdi
and the Novozhilov-Koiter models is the assumption that the
stress component normal to the midsurface is zero, a condition
which is the limiting case of the fully three-dimensional solution
with respect the thickness approaching zero. The Naghdi shell
model yields the correct solution in the limit t→0; however, nei-
ther the hierarchic shell model �1, 1, 0� nor the thin solid model
m=1 does, unless Poisson’s ratio is zero. The Naghdi model is not
a member of the hierarchic sequence of models but rather an
extension of the sequence for small t values. Hierarchic shell
�resp. thin solid� models characterized by mn�3 �resp. m�3�
give the correct limit solution with respect to t→0 and are said to
be asymptotically consistent.

Remark 4.1. In the case of shells, the distinction between the
notions of mathematical model and its discretization is blurred by
conventions in terminology. It is customary to refer to the various
shell formulations as theories or models. In fact, the hierarchic
models are semi-discretizations of the fully three-dimensional
model. Therefore, modeling errors that can be attributed to the
choice of indices �m� ,m� ,mn� in the case of hierarchic shell mod-
els, and the index m in the case of thin solid models, are related to
discretization rather than model definition.

4.3 Nonlinear Working Models for Shells. The model hier-
archy must account for nonlinear effects. This large and important
topic is not within the scope of this paper. For discussion and
examples, we refer to �10–12�.

5 Finite Element Spaces
The accuracy of the finite element solution is determined by the

finite element space. Finite element spaces are constructed by par-
titioning the solution domain 
 into finite elements. A partition
will be denoted by �, the number of elements of the partition by
M���, and the kth element by 
k. Typically, 
k is mapped from a
corresponding standard element 
st by smooth mapping functions
Q�k�.

Ideally, finite element spaces are constructed by adaptive meth-
ods such that the tolerance criteria for the data of interest are
satisfied. The initial finite element mesh should be laid out utiliz-
ing a priori information concerning the regularity of the exact
solution. For example, in the neighborhood of singular points and
lines the mesh should be graded in geometric progression with a
fixed common factor when p-extension is used �9�. If h-extension
is used then radical grading is optimal �13�. In the case of plate
and shell models the presence of boundary layers has to be taken

into account.
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5.1 Finite Element Space Used in the ORNL Investigation.
At the time of the ORNL investigation, the treatment of shell
models by the finite element method was in its very early stages of
development. Although the investigators were aware of some con-
temporary work on curved shell elements, shells were commonly
approximated by flat plate elements and most of the available
experience was with those elements. For this reason the investi-
gators decided to use flat plate elements for the purpose of ana-
lyzing the shell intersection problem �1�. The Hsieh-Clough-
Tocher �HCT� triangular element �14� was chosen for the
approximation of the displacement component normal to the mid-
surface of the shell. The constrained linear strain triangle �CLST�
was used for approximating the membrane components. A brief
description follows.

The HCT triangle is a composite element, comprised of three
subtriangles. On each subtriangle, an incomplete cubic polyno-
mial approximation, comprised of nine terms, is used. The poly-
nomials are chosen so that along the external edges the normal
derivative varies linearly. Therefore, there are nine coefficients per
subtriangle. C0 continuity is enforced for the subelements by con-
structing basis functions corresponding to the three nodal dis-
placements and six rotations for each subtriangle, as indicated in
Fig. 3�a� where the circles represent transverse displacements and
the arrows represent first derivatives �rotations in the sense of the
arrows�. The subtriangles are assembled, which is equivalent to
satisfying C0 continuity over the triangle.

At this point there are three internal degrees of freedom, indi-
cated in Fig. 3�a� by the closed circles and arrows, and nine ex-
ternal degrees of freedom, indicated by the open circles and ar-
rows. In order to satisfy exact and minimal C1 continuity, the
continuity of the normal derivatives along the internal edges is
enforced leading to three constraint equations, which establish a
relationship between the sets of internal and external degrees of
freedom. Using these constraint equations, the internal degrees of
freedom are eliminated. Thus, the HCT triangle has nine degrees
of freedom: three displacements and three rotations in each coor-
dinate direction.

Nonplanar quadrilateral plate elements assembled from four
HCT elements were used for approximating the displacement vec-
tor components normal to the shell surface. A typical element is
shown in Fig. 3�b�. Since the center node generally does not lie in
the same plane as the vertex nodes, there is a third rotation com-
ponent, not present in the constituent triangles. A third rotation
component is also present in the assembly of the quadrilateral
elements into the stiffness matrix, since adjacent elements are
generally not coplanar. The usual treatment is that the rotation
components are transformed into a Cartesian system, the origin of
which lies on the shell surface at the node and one axis is coinci-
dent with the normal to the surface. The rotation component in the
direction of the normal is usually neglected. This causes various
problems, for details we refer to �1,2,15�. For a discussion on
low-order shell elements we refer to �16�.

The in-plane �membrane� components of the displacement vec-
tor were approximated by a similar assembly of triangles. These

Fig. 3 „a… The 12 degrees of freedom HCT triangle and „b…
composite nonplanar quadrilateral element assembled from
four HCT triangles
vector components were approximated over each component tri-
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angle by quadratic polynomials constrained so that the variation is
linear over the external edges. This is known as the constrained
linear strain triangle �CLST�. A quadrilateral membrane element
has two degrees of freedom at each of its five nodes �1�. The finite
element space is the span of the assembled of HCT and CLST
triangles shown in Fig. 4.

The investigators recognized two sources of error: The errors
caused by using plate elements rather than curved shell elements
and by using a limited number of elements. Implied is the tacit
assumption that, as the number of elements is increased, the ap-
proximate solution will converge to the exact solution of the
Novozhilov-Koiter shell model. This has not been proven. There
is no guarantee that the sequence of finite element solutions ob-
tained by h-extension will converge to the exact solution of the
Novozhilov-Koiter model of this problem.

Remark 5.1. The definition of the HCT triangle given in �17� is
different from the one described here in that all subtriangles are
complete polynomials of degree 3 in which case there are
12 degrees of freedom, the nine degrees of freedom shown in Fig.
3�a� plus the first derivative in the direction of the normal at the
midpoint of each side.

5.2 Finite Element Spaces Used in the Present
Investigation. In the present investigation the thin solid formula-
tion implemented in the finite element analysis software product
StressCheck1 was used. The finite element mesh, consisting of
188 elements, is shown in Fig. 5. The nozzle and the shell were
partitioned into hexahedral elements, the intersection region was
partitioned into hexahedral and pentahedral elements. The hexa-
hedral elements were mapped from the standard hexahedron


st
�h�

ª ���,�,������ � 1, ��� � 1, ��� � 1� �13�

by smooth mapping functions. For details on mapping procedures,
we refer to �18�.

The standard polynomial spaces used in the present investiga-
tion are known as anisotropic trunk spaces. For p�1, 1�q� p,
these spaces are defined by

Str
ppq�
st

�h�� ª span��k���m,�p��m,��p�m,��,�,�� � 
st
�h�

1StressCheck is a trademark of Engineering Software Research and Development,

Fig. 4 Finite element mesh used in the ORNL investigation.
There are 649 nodal points, of which 25 nodal points are at the
intersection: Source: ORNL-DWG 69-10664R „reprinted with
permission from Oak Ridge National Laboratory…
Inc., St. Louis, MO.
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k,� = 0,1,2, ¯ ,k + � � p,m = 0,1,2 ¯ ,q �14�
For definitions of the isotropic trunk space on the standard hexa-
hedron Str

p�
st
�h�� and the standard pentahedron Str

p�
st
�p��, we refer

to �9�. The finite element space S�
� is the span of the mapped
basis functions defined on the standard elements, subject to the
exact and minimal continuity requirement of the formulation. Re-
ferring to Eq. �7�, q=m, corresponds to the thin solid formulation
characterized by the index m. For additional details, we refer to
�10,12,19�.

6 Working Models
The quality of a working model is determined by the proximity

of its exact solution to the exact solution of the state-of-the-art
model, more precisely, the proximity of functionals that would be
computed from the exact solution of the state of the art model and
the working model. Here we examine a sequence of working
models from the point of view of their ability to approximate
physical observations and data computed from physical observa-
tions through simple transformation.

The objective of the ORNL experiments was to investigate how
well thin shell theory is capable of predicting the stress distribu-
tion in intersecting cylindrical shells in the neighborhood of the
intersection. The investigators had in mind the Novozhilov-Koiter
shell model only. This model is a reasonable choice for represent-
ing the smooth parts of the intersecting shells. However, given
that the data of interest are the strain values in the vicinity of the
intersection, neither the kinematic assumptions nor the material
properties �plane stress� incorporated in this model are valid in
that region. Although the mathematical problem of the intersect-
ing cylinders for the Novozhilov-Koiter shell model is well de-
fined �20�, it is not a good representation of the physical problem.

The working models employed in the present investigation
were also based on the theory of elasticity, but differ from the
Novozhilov-Koiter shell model in kinematic assumptions and ma-
terial properties, as described in Sec. 4. The intersection region
was treated as a three-dimensional elastic region for each model.
The size of the intersection region �characterized by the dimen-
sions ds and dn shown in Fig. 6� is fixed for each working model.
Elsewhere, the kinematic assumptions of the thin solid formula-
tion were used with m=q=1,2 , . . ..

The problem of selecting a working model with respect to the
goals of computation of the ORNL experiments is understood as
follows: A particular working model based on the thin solid for-
mulation is judged to meet the necessary conditions for accep-
tance if the equivalent �von Mises� stresses computed in the gage
locations do not differ by more than � percent from the corre-
sponding equivalent stresses computed from the fully three-

Fig. 5 The 188-element mesh used in the present investigation
dimensional model. The choice of tolerance is, of course, arbi-
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trary; however, the accuracy required of the numerical solution
depends on this choice. The relative error in the numerical solu-
tion has to be less than �0.5� percent.

Using the 188-element mesh shown in Fig. 5 and the aniso-
tropic spaces Str

ppq�
st
�h�� with q=1,2 , . . . ,8, all working models

yielded consistent results within the prescribed tolerance of �
=2.5%. Therefore the simplest model �q=1� is preferred.

In comparing data computed from working models with physi-
cal measurements, it is necessary to recognize the differences be-
tween the mathematical problem being solved and the physical
system being modeled. These differences are enumerated in rela-
tion to the ORNL test article in the following:

1. Geometric variations. The ORNL investigators were careful
to minimize errors in manufacturing the test article; how-
ever, owing to unavoidable machining tolerances, some
variations in wall thickness and the other dimensions had to
be present. Quoting from Ref. �1�:

“A careful dimensional inspection of the machined model indi-
cated that, despite the care taken in machining, there were wall
thickness variations in both nozzle and cylinder with the nozzle
thickness being as much as 15% greater �0.007 to 0.008 in.
compared with the nominal 0.050 in.� in the fourth quadrant
than in the second.”

In the working models it is assumed that the shells are
defined by perfect cylindrical surfaces and constant wall
thickness.

The intent of the ORNL investigators was to manufacture
the intersection with zero fillet radius. In reality, the milling
tool leaves some fillet, see Fig. 2. In the working models the
fillet radius is zero. The test article had small flanges at the
ends. The working models do not account for those flanges.

2. Variations in material properties. The material properties as-
sumed by the ORNL investigators are the nominal elastic
constants of carbon steel. Modulus of elasticity: E=30
�106 psi �207 GPa�; Poisson’s ratio: �=0.3. The actual
elastic constants of the test article can differ from the nomi-
nal values by a few percent. There are no data on the statis-
tical variations of the modulus of elasticity and Poisson’s
ratio; however, it is reasonable to expect that the mean value
of E �resp. �� is within about 2% �resp. 5%� of the nominal
value. Therefore, systematic as well as random errors are
present in making comparisons between measured strains
and strains computed from the working models.

The relationship between stress and strain in the test ar-
ticle will become nonlinear when the strain corresponding to

Fig. 6 Mesh detail at the intersection region and location of
the strain gages in the plane of symmetry nearest to the inter-
section; 188-element mesh
the proportional limit is exceeded. In the working models
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examined herein, the material is assumed to be perfectly
elastic, independently of the magnitude of strain.

3. Differences in constraint conditions. Rigid end fixtures were
attached to the free end of the cylinder and the nozzle, as
described in Sec. 2.1. Details on the end fixtures are not
given in the ORNL reports; however, the investigators as-
sumed that the end fixtures were sufficiently rigid to con-
strain the ends of the cylinder and nozzle so as to maintain
the ends as plane circles �1�. In the working model con-
structed by the ORNL investigators the end fixtures were
represented by end plates. In the present investigation, the
fixture attached to the nozzle was represented by an end
plate. At the free end of the cylinder, the radial and tangen-
tial displacement components were set to zero.

4. Differences in loading conditions. The test article was
loaded through hydraulic rams acting on the end fixtures.
The accuracy of the applied load, and hence the accuracy of
the stress resultants, was determined by the accuracy of the
load cells. The transfer of the load through the end fixtures
was through mechanical contact. The precise distribution of
the tractions acting on the ends is not known. In the working
models used in the present investigation, uniform tractions
were applied on the free end of the cylinder.

5. Symmetry. The working model was assumed to be perfectly
symmetric. The test article was not perfectly symmetric and,
very likely, the strain gages were not installed to be perfectly
symmetric.

It is seen that even under very carefully controlled experimental
conditions some degree of uncertainty concerning the physical
system is present. Some of these uncertainties can be reduced,
other uncertainties either cannot be reduced or may not be feasible
to reduce. For example, the mean value of the elastic constants
can be determined by simple coupon tests. The dimensions of the
test article can be measured with high accuracy. On the other
hand, it would be very difficult to determine the distribution of the
tractions or constraint conditions imposed by the end fixtures. In
addition, some degree of uncertainty is associated with the instru-
ments employed in making the observations and the effects of the
environment on the instruments.

In view of these uncertainties one cannot expect very close
correlation between computed and experimental data. In the
ORNL experiments the largest uncertainties are caused by the
difficulties associated with manufacturing thin-walled objects to
tight tolerances and mathematical representation of the constraint
conditions.

7 Numerical Results
It is necessary to ascertain that the errors in the computed data

are well below the threshold set for rejection of a working model.
In this investigation, the following steps were taken: �i� The rela-
tive error in energy norm was estimated. This provides an overall
view of the quality of the approximation. The error in energy
norm is roughly equivalent to the rms error in stresses �9�. For the
188-element mesh the estimated relative error in energy norm
ranged between 1.15 and 3.20 %. �ii� The dependence of the data
of interest on the mesh and the polynomial degree of elements
was examined. It was found that the data of interest are substan-
tially independent of the mesh and the polynomial degree of ele-
ments. �iii� The data of interest were examined for jump discon-
tinuities at interelement boundaries. Substantial jump dis-
continuities in locations where the data should be continuous is an
indication that the discretization is inadequate. No significant dis-
continuities were found. These are necessary conditions that an
approximate solution will satisfy when the errors of approxima-
tion are not large.

Because of space limitations, only some of these procedures are
illustrated in the following. Details of the finite element mesh in

the shell intersection region are shown in Fig. 6. The size of the
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shell intersection region is characterized by the dimensions ds and
dn. Unless otherwise stated, in the numerical investigation
described herein these dimensions were fixed: ds
=0.25 in. �6.35 mm�; dn=0.20 in. �5.08 mm�.

The layout of the mesh in the intersection region is typical of
meshes used in p-extensions when corner singularities are present
�9�. Nodal point B lies on the line of intersection between the
outer surface of the nozzle and the outer surface of the shell in the
plane of symmetry. Nodal point A lies on the line of intersection
between the outer surface of the shell and the plane of symmetry.

The convergence of the equivalent stress at Point A, with re-
spect to the number of degrees of freedom N, is shown in Fig. 7
on a semi-log scale for the fully three-dimensional model. It is
seen that the stress is substantially independent of the polynomial
degree p for p�5. The equivalent stress computed from the finite
element solution cannot be close to its exact value if this criterion
is not satisfied.

A similar plot shown in Fig. 8 for the equivalent stress com-
puted for point B clearly indicates divergence. This is caused by
the presence of an edge singularity. The equivalent stress com-
puted for the exact solution of the elasticity problem is infinity in
this point; hence, the equivalent stress computed from the finite
element solution cannot converge to a finite value. Consequently,
extrapolation of strain data from the gage locations to the inter-
section is not permissible.

Equivalent stresses in strain gage locations nearest to the inter-
section region in the plane of symmetry �toward the fixed-end of
the cylinder� are shown in Table 1. These data were computed
from the solutions obtained for the fully three-dimensional model
with p ranging from 1 to 8. The number of degrees of freedom �N�
are shown in the second column. Points C, D, E, and F are shown
in Fig. 6. Each stress value converges strongly to a limit value,
similar to the convergence shown in Fig. 7. The corresponding
experimental data and the relative differences �DIFF�, using the

Fig. 7 Convergence of the equivalent stress at node A shown
in Fig. 6, 188-element mesh

Fig. 8 Convergence of the equivalent stress at node B shown

in Fig. 6; 188-element mesh
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computed values as the base, are shown in the last two rows. It is
seen that the differences are very substantial in three of the four
points.

These differences are attributed primarily to variations in wall
thickness. All other uncertainties would have a much smaller ef-
fect. Inspection of the test article revealed variations in wall thick-
ness as large as 15% �1�. Variations in wall thickness affect both
the distribution and magnitude of stresses. The magnitude of these
effects depends on whether the solution is bending- or membrane-
dominated. Assuming that the bending moments and membrane
forces are independent of the wall thickness, in a bending �resp.
membrane� dominated region, 10% change in wall thickness
causes �24% �resp. 11%� change in stress.

In experiments designed for purposes of validation it is neces-
sary to eliminate uncertainties with respect to the object of the
experiment as much as possible �4�. In the ORNL test article
described in this paper the dominant source of uncertainty is the
unknown variation in wall thickness. Ideally, the external and in-
ternal surfaces would be carefully measured and the actual sur-
faces would be used in the working model. With today’s technol-
ogy it would be possible to produce a CAD model of the test
article as manufactured, to within 0.001 in. �0.025 mm� tolerance.
The complexity of the resulting geometrical description of the test
article would however, make construction of the working model
significantly more complicated.

In the immediate vicinity of the junction there are large bending
moments that decay with respect to distance from the junction.
The computed and experimentally obtained values of the equiva-
lent stress in gage locations along the line of intersection of the
plane of symmetry with the outer surface of the cylinder on the
fixed-end side are tabulated in Table 2. It is seen that the errors are
larger near the junction than away from it, and the errors are
roughly consistent with �10% variation in wall thickness. The
magnitude of the actual variation is unknown.

The other sources of error are inelastic deformation in the vi-
cinity of the junction, variations in material properties, errors in

Table 1 Equivalent stresses „psi… in the gage locations C, D, E,
F identified in Fig. 6. Fully three-dimensional model, the points
are located on the fixed-end side of the cylinder „1 psi
=6.895 kPa….

p N Pt. C Pt. D Pt. E Pt. F

3 6095 11225 11959 13729 16589
4 10828 12461 11680 16729 19687
5 17774 12455 12158 17644 19441
6 27497 12535 12089 17237 19005
7 40561 12542 12021 17108 19104
8 57530 12544 11982 17094 18903
EXPT 15569 14554 16981 13100

DIFF. �%� 28.6 24.1 −0.3 −28.9

Table 2 Computed „EFA… and experimentally „EXP… obtained
values of the equivalent stress „psi… in gage locations on the
intersection of the plane of symmetry with the outside surface
of the cylinder as a function of the distance „s… from the mid-
surface of the nozzle „inches….

s FEA EXP err �%�

0.125 12541 15569 24.14
0.250 10129 12381 22.23
0.375 8190 8870 8.31
0.500 6531 7453 14.13
0.625 5086 5783 13.70
1.000 2105 2242 6.49
1.500 1836 1844 0.42
2.000 2343 2230 −4.84
3.000 2431 2292 −5.71
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the location of the strain rosettes, errors in measurement, errors
caused by idealization of the actual constraint condition, and er-
rors in loading. None of these errors are large enough to explain
the observed differences. For example, to test the effect of inelas-
tic deformation, elastic perfectly plastic material behavior was
assumed, the yield stress being 36.0 ksi �248 MPa�. Using the de-
formation theory of plasticity it was found that the plastic zone
was confined to a very small neighborhood of the line of intersec-
tion of the outer surfaces, and hence, its effect on the stresses in
the gage locations was negligible. For a discussion on the other
effects, we refer to �3�.

A comparison between data computed from experimental mea-
surements and data computed from the fully three-dimensional
working model along the inner surface of the cylinder, measured
from the midsurface of the nozzle, is shown in Fig. 9.

Equivalent stresses computed in the strain gage locations la-
beled C, D, E, F in Fig. 6 �see also Table 1� from solutions ob-
tained by means of the hierarchic thin solid models based on the
spaces Str

ppq�
st
�h�� are shown in Table 3. The estimated relative

errors in energy norm, denoted by �er�E, are also given in Table 3.
These estimates are based on p-extension. Details are available in
�9�. It is seen that the stress data are insensitive to the choice of
thin solid model characterized by q.

One of the modeling assumptions is the selection of the size of
the intersection region indicated in Fig. 6 by labels ds and dn.
The data presented thus far was computed with ds
=0.25 in. �6.35 mm� dn=0.20 in. �5.08 mm�. Therefore, points C,
D, E, F were located within the intersection region. Letting ds

Fig. 9 Equivalent stress on the inside surface of the cylinder
versus distance from the midsurface of the nozzle

Table 3 Equivalent stresses „psi… in the gage
models, the points are located on the fixed-en

ds=0.25 in. �6.35 mm
p q �er�E N

8 1 3.20 41032
8 2 1.15 44766
8 3 1.35 47832
8 8 1.35 57530

Table 4 Equivalent stresses „psi… in the gage
models, the points are located on the fixed-en

ds=0.13 in. �3.30 mm
p q �er�E N

8 1 2.44 41032
8 2 1.11 44766
8 3 1.32 47832
8 8 1.31 57530
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=0.13 in. �3.30 mm� dn=0.15 in. �3.81 mm�, the points are lo-
cated in the thin solid region. Repeating the computations the
results shown in Table 4 are obtained. On comparing Table 3 with
Table 4 it is seen that the differences are negligibly small. This
indicates that the working models are insensitive to the size of the
intersection region.

8 Summary and Conclusions
The intent of the ORNL investigation was to determine whether

the finite element space characterized by the mesh shown in Fig.
4, and the HCT plate elements, combined with the CLST plane
stress elements, are capable of approximating strains in the given
gage locations. We understand this problem to consist of three
parts: �i� whether the Novozhilov-Koiter model is capable of rep-
resenting the deformation of the test article in the intersection
region; �ii� whether the three-dimensional assembly of planar
plate and membrane elements converge to the exact solution of
the Novozhilov-Koiter model as the size of the elements is re-
duced, and �iii� whether the mesh shown in Fig. 4 is suitable for
controlling the errors of discretization in the sense of Eq. �4�. The
ORNL investigation did not address these questions separately.

In the present investigation the need to address these questions
was avoided by �i� demonstrating that hierarchic thin solid formu-
lations provide consistent results in the gage locations even for the
lowest member of the hierarchy, characterized by q=1; �ii� curved
elements mapped by smooth functions rather than planar elements
were used, and �iii� the data of interest were shown to be substan-
tially independent of the discretization. Another important differ-
ence between the present investigation and the ORNL investiga-
tion is that in the present investigation the intersection region was
exempt from the kinematic assumptions of the thin solid formu-
lation.

The ORNL investigation highlights some of the difficulties and
limitations of experimental validation of working models for shell
problems. The experimental data are dominated by uncertainties
caused by difficulties associated with the fabrication of thin-
walled objects to exacting tolerances. Increasing the wall thick-
ness would reduce errors caused by manufacturing tolerances, but
then the thin shell model may not be applicable.

The primary objective in defining a working model is to ac-
count for all physical laws and relationships that have a significant
influence on the data of interest. Therefore, the choice of a work-
ing model depends on the data of interest and has to be validated
with respect to the data of interest. The secondary objective is to
identify the simplest working model that will satisfy the toler-
ances set for the data of interest.

ations C, D, E, F identified in Fig. 6. Thin solid
ide of the cylinder „1 psi=6.895 kPa….

n=0.2 in. �5.08 mm�
Pt. C Pt. D Pt. E Pt. F

12110 11730 16926 18432
12570 11978 17094 18904
12552 11979 17094 18904
12544 11982 17094 18903

ations C, D, E, F identified in Fig. 6. Thin solid
ide of the cylinder „1 psi=6.895 kPa….

n=0.15 in. �3.81 mm�
Pt. C Pt. D Pt. E Pt. F

12111 12470 17076 18169
12621 12026 17104 19141
12564 11941 17104 19143
12546 11964 17106 19143
loc
d s

�, d
loc
d s

�, d
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In correlation with experimental observations, a working model
is tested against data that are either observable or can be com-
puted from observable data. In the model problem discussed
herein, the strain components in surface points located in the vi-
cinity of the shell intersection were measured and the von Mises
stresses were computed in the gage locations.

The data of interest are, generally, not observable and cannot be
computed from observable data. For example, one may be inter-
ested in the maximum value of the integral of the normal stress
over some small area. Therefore, even if a working model were
shown to be successful in predicting certain measured data, it may
not be suitable for computing other data of interest. It is necessary
to have means for systematic evaluation of the effects of various
assumptions, incorporated in a working model, on the data of
interest. Virtual experimentation based on a hierarchic framework
of models and hierarchic discretizations is indispensable in the
development of expert knowledge.

The validity of a working model cannot be established by ex-
perimental correlation, in general. The purpose of validation ex-
periments is to determine whether certain necessary conditions are
met by a working model. Validation experiments cannot establish
sufficient conditions for acceptance of a working model.
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Plane-Strain Propagation of a
Fluid-Driven Fracture: Small
Toughness Solution
The paper considers the problem of a plane-strain fluid-driven fracture propagating in an
impermeable elastic solid, under condition of small (relative) solid toughness or high
(relative) fracturing fluid viscosity. This condition typically applies in hydraulic fractur-
ing treatments used to stimulate hydrocarbons-bearing rock layers, and in the transport
of magma in the lithosphere. We show that for small values of a dimensionless toughness
K, the solution outside of the immediate vicinity of the fracture tips is given to O�1� by
the zero-toughness solution, which, if extended to the tips, is characterized by an opening
varying as the �2/3� power of the distance from the tip. This near tip behavior of the
zero-toughness solution is incompatible with the Linear Elastic Fracture Mechanics
(LEFM) tip asymptote characterized by an opening varying as the �1/2� power of the
distance from the tip, for any nonzero toughness. This gives rise to a LEFM boundary
layer at the fracture tips where the influence of material toughness is localized. We
establish the boundary layer solution and the condition of matching of the latter with the
outer zero-toughness solution over a lengthscale intermediate to the boundary layer
thickness and the fracture length. This matching condition, expressed as a smallness
condition on K, and the corresponding structure of the overall solution ensures that the
fracture propagates in the viscosity-dominated regime, i.e., that the solution away from
the tip is approximately independent of toughness. The solution involving the next order
correction in K to the outer zero-toughness solution yields the range of problem param-
eters corresponding to the viscosity-dominated regime. �DOI: 10.1115/1.2047596�
Introduction
The problem of a fluid-driven fracture propagating in rock

arises in hydraulic fracturing, a technique widely used in the pe-
troleum industry to enhance the recovery of hydrocarbons from
underground reservoirs �1�. Other applications include magma-
driven fracture �2�, preconditioning of rock masses in mining op-
eration to promote caving �3�, formation of barriers to stop con-
taminant transport in environmental remediation projects �4�.
Despite numerous publications on this problem since the seminal
paper of Khristianovic and Zheltov �5�, the dependence of the
solution on the problem parameters has not yet been fully ad-
dressed. The main difficulty arises from the complicated math-
ematical structure of the problem, which involves nonlocal rela-
tionship between fracture opening and fluid pressure in the crack,
and a nonlinear equation governing the flow of fluid in the frac-
ture. Furthermore, the coupling between nonlinear flow and non-
local fracture deformation results in a complex solution structure
near the tip �6–10�, which, nevertheless, controls the global solu-
tion.

This paper is concerned with the problem of the quasi-static
propagation of a plane-strain hydraulic fracture in an impermeable
linear elastic solid. The fracture is driven by an incompressible
Newtonian fluid injected at a constant rate at the fracture inlet
�Fig. 1�. It is assumed that the fracture is filled by the injected
fluid, which flowing in the fracture according to lubrication theory
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Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS.
Manuscript received by the Applied Mechanics Division, September 30, 2004; final
revision, April 10, 2005. Review conducted by K. Ravi-Chandar. Discussion on the
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of
Applied Mechanics, Department of Mechanical and Environmental Engineering,
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be
accepted until four months after final publication in the paper itself in the ASME

JOURNAL OF APPLIED MECHANICS.

916 / Vol. 72, NOVEMBER 2005 Copyright ©
�11�. This model has been initially formulated by Geertsma and de
Klerk �12� and by Spence and Sharp �6�, while similar models of
the plane-strain propagation of fluid-driven fractures have been
considered by various authors including Nilson �13,14� �for com-
pressible fluid and pressure boundary condition at the inlet�,
Huang et al. �15� �for inviscid Eulerian fluid�, and Adachi and
Detournay �16� and Garagash �17� �for non-Newtonian fluids�.

In the considered model, two limiting propagation regimes can
be identified with the dominance of one of the two energy dissi-
pation mechanisms, either in fracturing of the rock or in flow of
the viscous fluid �18,19�. In the viscosity-dominated regime, dis-
sipation in extending the fracture in the rock is negligible com-
pared to the losses in the viscous fluid flow, while in the
toughness-dominated regime, the opposite is true. The solution in
and near the viscosity-dominated regime and the corresponding
parametric range is the focus of this paper. In contrast, the solu-
tion obtained by Spence and Sharp �6� applies in the intermediate
regime when the effects of both toughness and viscosity are of the
same order. �Their numerical scheme for the finite toughness has
been further improved by Adachi �20�.� The solution in and near
the toughness-dominated regime has been considered by Garagash
�21,22�.

In the viscosity-dominated regime, one expects that the solution
can be approximated to a reasonable degree of accuracy by the
zero-toughness solution �16,23�. The zero-toughness solution,
however, cannot be readily applied over the complete extent of the
fracture for any nonzero value of toughness, as the near tip weakly
singular behavior of the zero-toughness solution �6–8� is incom-
patible with the Linear Elastic Fracture Mechanics �LEFM� sin-
gularity �24�. This paper establishes the conditions under which
the influence of material toughness is localized to the near tip
LEFM boundary layer. It also describes the construction of the
solution, which matches with the outer �zero-toughness� solution
over a lengthscale intermediate to the boundary layer thickness

and the fracture length. The matching condition and the corre-
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sponding structure of the overall solution ensure the existence of
the viscosity-dominated regime, when the solution away from the
tip is independent of the material toughness and is given by the
zero-toughness solution. To establish the range of problem param-
eters corresponding to the viscosity-dominated regime, the next-
order toughness correction to the outer zero-toughness solution is
considered. The paper is concluded by a discussion of the limiting
propagation regimes and corresponding parametric ranges.

Problem Formulation
We consider a finite two-dimensional hydraulic fracture of half

length ��t� propagating in an impermeable linear elastic medium
characterized by Young’s modulus E, Poisson’s ratio �, and tough-
ness KIc �Fig. 1�. An incompressible fluid of viscosity � is in-
jected at the center of the fracture at a constant injection rate Qo.
The crack is loaded by an internal fluid pressure pf�x , t� and by a
far-field confining stress �o. We look for the solution of this prob-
lem in terms of the net pressure p�x , t�= pf�x , t�−�o, the fracture
opening w�x , t�, and the fracture half-length ��t�, where x is the
position along the crack with the origin at the inlet and t is the
time counted from the moment injection has started. The analysis
is performed under the following assumptions.

�i� The fracture is always completely filled by fluid; i.e., there is
no lag between the fracture and the fluid fronts, and the fracture
volume is given by the volume of injected fluid V�t�=Qot. This
assumption can be justified under conditions of “slow” fracture
propagation or high confining stress �9,25�. As a consequence of
this assumption, the far-field stress �o enters the solution only as a
reference value for the fluid pressure in the expression for the net
pressure p.

�ii� The fracture is always in mobile equilibrium and its quasi-
static propagation can be described within the framework of
LEFM �24�.

�iii� Fluid flow in the crack is described by lubrication theory
�11�. No exchange of fluid taking place between the fracture and
the surrounding impermeable solid.

The governing equations of the model can be formulated over
half of the crack, 0�x��, by accounting for the problem sym-
metry. The set of effective material parameters

E� =
E

1 − �2 , �� = 12�, K� = 4� 2

�
�1/2

KIc. �1�

corresponding to the elastic modulus, the fluid viscosity, and the
material toughness, respectively, is used in the formulation.

The fluid flow inside the crack is described by the continuity
equation and Poiseuille law

�w

�t
+

�q

�x
= 0, q = −

w3

��

�p

�x
, �2�

where q denotes the fluid flow rate per unit �out-of-plane� width.
An alternative form of the continuity equation can be obtained by
integrating Eq. �2�a and taking into account the continuity condi-

Fig. 1 Sketch of a plane-strain fluid-driven fracture
tion at the fracture tip, q /w=d� /dt,
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�

�t�
x

�

wdx = q . �3�

Global fluid continuity requires the injected fluid volume V�t� to
be equal to the fracture volume; hence

2�
0

�

wdx = V�t� . �4�

Deformation of the solid and the fracture propagation criterion
are prescribed by the LEFM equations. The net pressure p= pf
−�o is related to the crack opening w by an integral equation of
linear elasticity theory �24�, which can be written in view of the
problem symmetry as

p�x,t� = −
E�

2�
�

0

�
�w�x�,t�

�x�

x�dx�

x�2 − x2 . �5�

The assumption that the fracture is in mobile equilibrium requires
that the stress intensity factor KI is always equal to the toughness
KIc. The propagation condition KI=KIc can be prescribed as a tip
asymptote for the crack opening �24�

w =
K�

E�
�� − x�1/2 � − x � � . �6�

Equations �2� to �6� fully define the fracture length ��t�, the
opening w�x , t�, and the net pressure p�x , t� as functions of the
injection law V�t� and the set of parameters �1�.

Viscosity Scaling
A scaling appropriate for constructing the “small” toughness

solution should not contain K� in the scaling factors used to define
dimensionless crack opening �, net pressure �, and crack half-
length 	. Such a viscosity scaling, together with the corresponding
normalized governing equations, is presented in Appendix A for a
general injection law, V=V�t�. For a constant injection rate, V
=Qot, these scaling laws reduce to �19�

w�x,t� = 
�t�L�t����;K� ,

p�x,t� = 
�t�E����;K� , �7�

��t� = L�t�	�K� ,

where �=x /��t� is the scaled coordinate ��=0 and �=1 corre-
spond to the crack inlet and the crack tip, respectively�, and where
the parameter 
�t�, the length scale L�t�, and the dimensionless
toughness K are defined as


 =
Qot

L2 , L =
Qo

1/2E�1/6

��1/6 t2/3, K =
K�

E�
� E�

��Qo
�1/4

. �8�

It is also useful to define the alternative scaling for the fracture
opening in the form

�̄��;K� = ���;K�/	�K� . �9�

The governing Eqs. �2�–�6� in terms of the new quantities and
the variable �� �0,1� become �see Appendix A�

�
�

1

�̄d� +
2

3
��̄ = − �̄3d�

d�
, 	−2 = 2�

0

1

�̄d� , �10�

���� = L��̄	���, � → 1:�̄ = K	−1/2�1 − ��1/2 �11�

with the elasticity operator L defined as

L��̄	��� = −
1

2�
�1

d�̄����
d��

��d��

��2 − �2 . �12�

0
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The solution F�� ;K�= ��̄ ,� ,		 of the system of Eqs. �10� and
�11� is thus self-similar �6�. The time-dependence of the dimen-
sional solution is a power-law solely defined by the scaling
�7�–�9�.

The dimensionless toughness K, the only parameter controlling
the solution F, characterizes the relative importance of the solid
toughness K� and the fluid viscosity �� on the propagation of a
hydraulic fracture. The focus of this paper is on the solution when
the former effect is small compared to the later, i.e., when the
toughness K is small. This solution can be sought in the form of
an asymptotic series expansion in a small toughness-dependent
parameter E�K��1 near E�0�=0,

F��;K� = F0��� + E�K�F1��� + ¯ �13�

�A particular form of the expansion parameter E�K� is to be fur-
ther determined from the asymptotic analysis of the governing
equations.�

In the expansion �13�, F0���=F�� ;0� is the zero-toughness so-
lution �16,23� and the small parameter E�K� is at this point an
unknown function of K. The fracture is said to propagate in the
viscosity-dominated regime if its solution can be approximated by
the zero-toughness solution, F0���, i.e., when the next-order term,
E�K�F1���, in the expansion �13� is negligible, E�K��1. Once
E�K� has been determined, the later condition provides the range
�0,Ko� corresponding to the viscosity-dominated regime.

The zero-toughness solution is known to have a weakly singu-
lar near tip asymptote characterized by the fracture opening vary-
ing as a 2/3 power-law of the distance from the tip �8�. This zero
toughness solution is thus incompatible with the LEFM tip singu-
larity that takes place whenever the toughness is nonzero, and
which is characterized by a 1/2 power-law for the fracture open-
ing, Eq. �11�b. Thus, the zero-toughness solution is not uniformly
valid along the fracture for small toughness K�1, and a localized
boundary layer possessing the LEFM behavior has to exist near
the tip of the moving hydraulic fracture for arbitrary small K.
Therefore, the series expansion �13� has to actually correspond to
the outer small toughness solution.

In the following, we first discuss the solutions for the terms in
the outer expansion �13� and their asymptotes near the fracture tip;
namely, the zero-toughness solution, which provides the solution
on the length scale of the fracture in the viscosity-dominated re-
gime, and the next order, O�E�K��, toughness correction to it.
Then we analyze the solution in the LEFM boundary layer and its
asymptotic behavior away from the tip. Finally, we establish the
condition when there exists an intermediate length scale with re-
spect to the LEFM boundary layer thickness and the fracture
length scale, over which both inner and outer solutions possess the
same intermediate asymptote. Under this condition, the inner and
outer solutions can be matched to form the composite small-
toughness solution uniformly valid along the length of the crack.
In particular, this matching condition enables the determination of
E�K�, which characterizes the dependence of the outer solution
�13� on the toughness.

Outer Problem

Zero-Toughness Solution. The zero-toughness solution, F0

= ��̄0��� ,�0��� ,	0	, is governed by the set of Eqs. �10� and �11�
with K=0

�
�

1

�̄0d� +
2

3
��̄0 + �̄0

3d�0

d�
= 0, 	0

−2 = 2�
0

1

�̄0d� , �14�

�0 = L��̄0	, lim
�→0

�1 − ��−1/2�̄0��� = 0 �15�

The system of Eqs. �14� and �15� can be solved by means of a

series expansion over a class of special functions �16�. The nor-
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malized fracture length is 	0
0.61524, and the fracture opening

�̄0��� and pressure �0��� are plotted in Fig. 2. Importantly, the
near tip asymptote of the zero-toughness solution is given by the
HF eigensolution �8�, which corresponds to the solution of a semi-
infinite hydraulic crack with zero lag propagating steadily in a
zero-toughness elastic solid. In the scaling for a finite fracture, this
tip asymptote is given by

� → 1:�̄0 = �2

3
�1/3

��1 − ��2/3, �0 = �2

3
�1/3

�1 − ��−1/3

�16�

with �=21/335/6 and =−6−2/3.
The near tip asymptotic behavior of the opening, Eq. �16�, sat-

isfies the fracture propagation condition for zero toughness, Eq.
�15�b. However, if the toughness is arbitrarily small, the propaga-
tion condition �11�b together with the lubrication equation �10�
yields a logarithmic pressure singularity at the fracture tip. Thus,
the zero toughness solution with the asymptotic behavior �16�
does not satisfy the tip boundary condition for nonzero toughness
and, consequently, points to the existence of a LEFM boundary
layer near the fracture tip for small K.

Next-Order Toughness Correction.

Governing Equations and Asymptotic Behavior. The governing
equations for the term F1��� in Eq. �13� are obtained by substitut-
ing the outer expansion �13� into Eqs. �10� and �11� and retaining
terms of order E�K�

�1

�̄1d� +
2

3
��̄1 = − ��̄0

3d�1

d�
+ 3�̄1�̄0

2d�0

d�
� ,

Fig. 2 Zero- „after Adachi and Detournay †16‡… and first-order
terms in the outer solution expansion „13… for the normalized
opening �̄, „a…, and net-pressure �, „b…. Solution for �̄1 and �1
is shown for n=1 „dotted lines… and n=10 „solid lines… terms in
series „21….
�
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	1 = − 	0
3�

0

1

�̄1d�, �1 = L��̄1	 . �17�

The LEFM tip boundary condition �11�b is inconsequential for the
outer solution, as it should be accounted for in the boundary layer
solution.

Let us assume that the opening term �̄1 behaves asymptotically
as A�1−��h near the fracture tip, where h� �0,1� and A is a con-
stant. Then, according to the asymptotic properties of the elasticity
Eq. �17�c, the near tip asymptote of the pressure term �1 is given
by A4−1h cot��h��1−��h−1 �see also Appendix C of �6��. How-
ever, since the coefficient E�K� in front of the next-order term
F1��� in the outer expansion �13� is yet to be determined, we can

arbitrarily set A=1. Thus, the term ��̄1 ,�1	 has the following tip
asymptote

� → 1:�̄1 = �1 − ��h, �1 = 4−1h cot��h��1 − ��h−1. �18�

Substitution of the asymptotes, Eqs. �16� and �18�, into the lubri-
cation Eq. �17�a yields

� → 1:�−
4

3
+

�3

6
h�1 − h�cot��h���1 − ��h + O��1 − ��h+1� = 0.

�19�

The value of the power law index h is then obtained by equating
the coefficient in front of the leading term in Eq. �19� to zero.
Numerical solution of the resulting transcendental equation in h
� �0,1� gives

h 
 0.138673. �20�

It can further be established from the governing Eqs. �17� that the

next order terms in the tip asymptotic expansion of �̄1 and �1 are
O��1−��h+1� and O�1�, respectively.

Numerical Solution. We proceed with the solution F1��� of Eqs.
�17� with Eq. �18� via a series expansion approach �6,16�. The
solution is sought in terms of a truncated series which satisfies the
elasticity equation exactly

�̄1 
 
j=0

n

Aj�̄ j
* + B�̄**, �1 
 

j=1

n

Aj� j
* + B�**, �21�

where �̄ j
* and � j

*=L��̄ j
*	 �j=1, . . . ,n� are ‘base functions,’ �̄**

and �**=L��̄**	 are “particular functions,” and n+1 is the finite
number of terms in the solution approximation. The leading base

function �̄0
* and the corresponding coefficient A0 are chosen to be

compatible with the near tip asymptote �18�

�̄0
* = �1 − �2�h, A0 = 2−h. �22�

The rest of the base functions for the opening are chosen in the
form of the product of �1−�2�h+1 times a polynomial �assuming

that �1−�2�−h�̄1 is a regular function�,

�̄ j
* = �1 − �2�h+1C2j

�h+1/2����, j = 1, . . . ,n , �23�

where C2j
����·� is the Gegenbauer polynomial of degree 2j and in-

dex � �26�. The base functions for the opening, Eqs. �22� and �23�,
are even over the interval �−1,1�; furthermore they are zero at the
tips ��= ±1� and finite at the inlet ��=0�. The index �=h+1/2 is
selected to enable close form integration of the elasticity equation
�16�. The corresponding pressure base functions � j

*, gradients

d� j
* /d�, and ��

1�̄ j
*d� �needed for further evaluation of different

terms in the lubrication Eq. �17�a� are listed in Appendix B.
Since the gradient of the pressure base functions �B10� and
�B11� is identically zero at the fracture inlet, �=0, the particular
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functions ��̄** ,�**	 are chosen to account for a nonzero pressure
gradient at the inlet, i.e., d�** /d� is nonzero at �=0. The form of

the particular functions ��̄** ,�**	, which satisfies the elasticity
Eq. �17�c and the latter condition, is chosen as in �16,23�,

�̄** = 4�1 − �2 + 2�2 ln� 1 − �1 − �2

1 + �1 − �2�, �** = 2 − ���� .

�24�

Expression for the next order term in the crack length, 	1, is
obtained from substitution of Eq. �21�a into Eq. �17�b

	1 = −
1

2
	0

3�B�1

2
,1 + h�A0 −

1

2
+ h

5

2
+ h

B�1

2
,2 + h�A1 +

4�

3
B� ,

�25�

where B�· , · � is Euler’s beta function �26�. �Note that the contri-

bution of the terms �̄ j
* with j=2, . . . ,n is zero.�

The series expansion of ��̄1 ,�1	 in the form Eqs. �21� with
�22�, �23�, �B7�, and �B8� satisfies the elasticity Eq. �17�c and the
tip asymptote �18�. Let us denote the difference between the left-
hand-side and the right-hand-side of the lubrication Eq. �17�a,

evaluated at a pair ��̄ j
*��� ,� j

*���	 �j=0, . . . ,n� or the pair

��̄**��� ,�**���	 by Qj
*��� �j=0, . . . ,n� or Q**���, respectively.

Readily derived expressions for Qj
*��� and Q**��� are omitted

here. Substitution of Eq. �21� into Eq. �17�a and evaluation at n
+1 collocation points ��0 ,�1 , . . . ,�n	 then yields a linear system of
algebraic equations in �A1 , . . . ,An ,B	


j=1

n

Qij
* Aj + Qi

**B = − 2−hQi0
* , i = 0, . . . ,n , �26�

where Qij
* =Qj

*��i�, Qi
**=Q**��i�, i , j=0, . . . ,n.

The solution of the linear system of Eqs. �26� in �A1 , . . . ,An ,B	
is carried out for n=1, 5, 10, and using collocation points regu-
larly distributed on the interval �� �0,1�. The results are summa-
rized in Table 1. The convergence error of the solution for a given
number of coefficients n+1 is computed in the form e�n�

1 2

Table 1 Numerical values of coefficients and other overall pa-
rameters in the solution �̄1„�… ,�1„�… ,�1 for the next order term
in the outer solution

n=1 n=5 n=10

A1 −4.0042·10−2 −5.8281·10−2 −6.3997·10−2

A2
- −1.4754·10−2 −2.3096·10−2

A3
- −7.3942·10−3 −1.5558·10−2

A4
- −2.0583·10−3 −8.4194·10−3

A5
- −6.5172·10−4 −4.7703·10−3

A6
- - −2.2503·10−3

A7
- - −1.0271·10−3

A8
- - −3.5380·10−4

A9
- - −1.0931·10−4

A10
- - −4.4877·10−6

B −4.5476·10−2 −4.5930·10−2 −4.6015·10−2

�̄1�0� 0.75202 0.75693 0.75802

�1�0� 0.09683 0.09920 0.09951
	1 −0.17475 −0.17520 −0.17536
e�n� 4.89·10−4 1.80·10−5 1.49·10−6
=�0Q ���d�, where Q��� is the difference between the left and the
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right hand sides of the lubrication Eq. �17�a.

The next-order opening �̄1 and pressure �1 terms, computed
for n=1 and n=10, are plotted in Fig. 2 with solid and dotted
lines, respectively. This figure suggests that the numerical scheme
is robust since the solution for n=1, which consists of three terms:
The leading term �correct tip asymptote�, the first regular term,
and the particular solution �correct inlet behavior�, e.g., for the

opening �̄1
A0�̄0
*+A1�̄1

*+B�̄**, is already an excellent ap-
proximation.

LEFM Boundary Layer

Scaling and Governing Equations. We look for a scaling of
the solution in the LEFM boundary layer in the form: 1−�

=K���̂, �̄=K���̂, �=K���̂ where �̂ is a scaled distance from
the tip. The scaling exponents ��, ��, and �� are obtained by
substituting the above expressions into the governing Eqs. �10�
and �11� and requiring that the solution ��̂��̂� ,�̂��̂�	 of the result-
ing boundary layer equations is non-trivial in the limit K→0, and

possesses the LEFM square root behavior at the fracture tip ��̂
→0�. This procedure yields the unique set ��=6, ��=4, ��

=−2.
Consequently, the thickness of the tip boundary layer is of order

K6�, and the K-scaling of the tip coordinate 1−�, opening �̄, and
pressure � is as follows

1 − � = K̂6�̂, �̄��� = �2

3
�1/3

K̂4�̂��̂�, ���� = �2

3
�1/3

K̂−2�̂��̂� ,

�27�

where K̂ bears the meaning of toughness parameter given by di-
mensionless toughness K multiplied by an O�1� factor,

K̂ = �2

3
�1/3

	−1/2K , �28�

and the numerical factor �2/3�1/3 have been introduced to the
boundary layer scaling above in order to simplify the numerical
coefficients in the equations resulting from Eqs. �10�, �11�, and
�27�

�̂�1 − �̂2d�̂

d�̂
� + K̂6�3

2�
0

�̂

�̂d�̂ − �̂�̂� = 0, 0 � �̂ � K̂−6,

�29�

�̂��̂� =
1

4�
�

0

K̂−6
d�̂�s�

ds

1 − K̂6s

1 −
1

2
K̂6��̂ + s�

ds

�̂ − s
, �̂ → 0:�̂ = �̂1/2.

�30�

In the limit K̂→0, Eqs. �29� and �30� reduce to the following

system of integro-differential equations in �̂� �0,��,

�̂0
2d�̂0

d�̂
= 1, �̂0��̂� = L̂��̂0	��̂�, �̂ → 0:�̂0 = �̂1/2, �31�

where L̂ is the elasticity operator for a semi-infinite crack �24�

L̂��̂	��̂� =
1

4�
�

0

�
d�̂�s�

ds

ds

�̂ − s
. �32�

Equations �31� and �32� govern the O�1� boundary layer solution
ˆ ˆ ˆ ˆ
��0��� ,�0���	.
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Semi-Infinite Fracture. Intuitively, if the tip boundary layer
were to exist in the small toughness case, its O�1� solution has to
be given by the solution of a semi-infinite crack propagating at the
velocity prescribed by the outer solution. Indeed, using relation
�27� between inner and outer scalings and definitions �7� and �8�
of the outer scaling, we can rewrite Eqs. �31� in terms of the
physical field variables, namely the net pressure p and the opening
w

w2�x̂�
��

dp

dx̂
= vtip, p�x̂� = E�L̂�w	�x̂�, x̂ → 0:w =

K�

E�
x̂1/2,

�33�

where x̂=xtip−x is a coordinate moving with the crack tip �Fig. 3�,
and the propagation velocity vtip is given by the instantaneous
propagation velocity of the finite fracture in the zero-toughness

solution, vtip=	0L̇�t�. Equations �33� are in fact identical to the
governing equations of the problem of a semi-infinite fluid-driven
fracture steadily propagating at constant velocity and character-
ized by zero lag �9�. In other words, the boundary layer solution is
given at any time by the solution of the semi-infinite crack prob-
lem with a constant tip velocity corresponding to the current
propagation speed of the finite fracture.

The tip boundary layer scaling defined by Eqs. �27� �i.e., nor-

malized distance from the tip �̂, opening �̂, and net-pressure �̂� in
relation to the scaling of the finite fracture, Eqs. �7�, can be
equivalently redefined in terms of the “tip” parameters only �i.e.,
the tip velocity and the material parameters� as follows,

x̂ = �̂�̂, w�x̂� = 
̂�̂�̂��̂�, p�x̂� = 
̂E��̂��̂� �34�

where the tip lengthscale �̂ and the small tip parameter 
̂ are given
by

�̂ = � K�

E�2/3��1/3vtip
1/3�6

, 
̂ =
K�2

E���vtip
. �35�

We can verify that the tip lengthscale �̂ does, indeed, define the tip
boundary layer thickness which relates to the global fracture

lengthscale � via the toughness parameter K̂, Eq. �28�, as in

K̂ = ��̂/��1/6. �36�

We further observe that the boundary layer solution of Eqs. �31�
is actually a particular case of a more general solution, which
allows for a lag between the fluid and fracture fronts �9�. This
particular solution emerges under the condition of vanishing lag,
�K� /E����o / ���vtip��1/2�4. The latter provides the sufficient con-
dition when the zero-lag assumption adopted in this study holds.

Asymptotic Behavior. The near tip asymptotic expansion of

��̂0 ,�̂0	 can be obtained from an asymptotic analysis of the
boundary layer Eqs. �31� as follows. The leading term �square

root� in the �̂0 asymptotic expansion at the tip is given by Eq.

�31�c; the corresponding leading term �logarithmic� in the �̂0

Fig. 3 Semi-infinite fluid driven fracture
asymptotic expansion then follows from the lubrication Eq. �31�a.

Transactions of the ASME



The second term �linear� in the �̂0 expansion is obtained from the

leading term in the �̂0 expansion and the use of the elasticity Eq.

�31�b. The second term in the �̂0 expansion then follows from the

second term in the �̂0 expansion via the lubrication equation. This
alternating use of the lubrication and the elasticity equations en-
ables us to establish the following asymptotic expansion of the
boundary layer solution near the fracture tip

�̂ → 0:�̂0 = �̂1/2 + 4��̂ +
128

3
�̂3/2 ln �̂ + O��̂3/2� , �37�

�̂ → 0:�̂0 = ln �̂ + k0 − 16��̂1/2 −
256

3
�̂ ln �̂ + O��̂� . �38�

The constant k0 in the �̂0 asymptotic expansion and the coeffi-

cients for the terms of O��̂3/2� in Eq. �37� and of O��̂� in Eq. �38�,
cannot be obtained from asymptotic considerations only and are
part of the complete boundary layer solution.

The far-field asymptote ��̂�1� of the boundary layer solution
can be proven �9�, to be given by the HF eigensolution discussed

earlier: �̂0���̂2/3, �̂0��̂−1/3 for �̂→�, with the constants �
and  defined in Eqs. �16�. Since the above asymptote is actually

the exact solution of the elasticity Eq. �31�b, the remainder ��̂0

−��̂2/3 ,�̂0−�̂−1/3	 has also to be the exact solution of the elas-

ticity equation, in view of its linearity. Assuming that �̂0−��̂2/3

behaves asymptotically as �1�̂ĥ for �̂�1 with ĥ� �0,2 /3�, the

corresponding asymptotic form of �̂0−�̂−1/3 follows from the
general properties of the Cauchy integral in the elasticity equation.
Hence, the far-field asymptotic expansion of the boundary layer
solution can be written as

�̂ → �: �̂0 = ��̂2/3 + �1�̂ĥ + o��̂ĥ� , �39�

�̂ → �: �̂0 = �̂−1/3 + �1
ĥ cot��ĥ�

4
�̂ĥ−1 + o��̂ĥ−1� . �40�

Substituting Eqs. �39� and �40� into the lubrication Eq. �31�a, and

equating the coefficient in front of the leading term �̂ĥ−2/3 �when

�̂�1� to zero yields a transcendental equation for ĥ, identical to
the one for the exponent h in the near tip asymptote �18� of the

term F1��� of the outer solution �13�. Hence, ĥ=h
0.138673,
according to Eq. �20�. However, the coefficient �1 like the coef-
ficient k0 of the near tip expansion can only be computed when
constructing the complete boundary layer solution.

According to relationship �27� between the outer and inner scal-

ings, the leading term in the far field ��̂�1� asymptotic expan-
sions �39� and �40� of the inner solution is identical to the near tip
�1−��1� asymptote �16� of the zero-toughness �outer� solution.
This correspondence of these inner and outer solution asymptotes
is actually anticipated as the inner solution is expected to provide
the tip boundary layer solution. In other words, the inner solution
has to be a “smooth continuation” of the outer solution into the
near tip region.

Solution. The solution of Eqs. �31� has been originally obtained
by Garagash and Detournay �9�. Their solution relies on construct-
ing numerically the transition between the leading terms in the
asymptotic expansions �37�–�40�. Appendix C describes an im-
proved numerical scheme that takes into account the complete
asymptotic expansions, rather than their leading terms only. Incor-
poration of additional asymptotic terms reduces, by several orders

ˆ
of magnitude of �, the extent of the intermediate region where the
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solution has to be computed numerically.
The numerical solution yields the numerical values of the two a

priori unknown coefficients in the asymptotic expansions
�37�–�40�

k0 
 5.504, �1 
 3.719 · 10−2. �41�

The opening �̂0 and pressure �̂0 in the boundary layer solution

are shown in Fig. 4. The boundaries of the near tip region, �̂0, and

of the far-field region, �̂�, where the solution for the opening is
approximated by the leading asymptotic terms in Eqs. �37� and

�39� within 1% accuracy �i.e., 4��̂0 / �̂0
1/2=1%, �1�̂�

h /��̂�
2/3=1%�

are given by

�̂0 
 6.33 · 10−7, �̂� 
 1.34. �42�

These boundaries are outside of the �̂-range of Fig. 4, where the
leading terms in the near tip and far field expansions for the open-
ing are shown by the short dash lines with the appropriate slope
tags. However, the boundaries corresponding to the regions where
the solution for the opening is given by the complete asymptotic
expansions near the tip, Eq. �37�, and away from the tip, Eq. �39�,
were computed from the numerical solution as

�̂0
* 
 5.69 · 10−5, �̂�

* 
 3.39 · 10−2. �43�
We are now able to estimate the thickness of the LEFM bound-

ary layer, which is defined as the extent of the region where the
boundary layer solution is sufficiently different from the leading
term in the far field asymptote. According to Eq. �42�b, the extent
of the LEFM layer is of order unity in the boundary layer scaling

and is consequently of order K̂6 in the outer scaling �27�.

Matching of Outer and Inner Solutions. The asymptotic be-
havior of the small toughness expansion �13� of the outer solution
follows from the asymptotes �16� and �18� of the O�1� and

Fig. 4 LEFM tip boundary layer solution: Variation of dimen-
sionless „a… opening �̂ and „b… net-pressure �̂ with the dis-
tance from the tip �̂. Asymptotic expansions of the solution in
the near-field „near-tip… and the far-field are shown by long
dash lines.
O�E�K�� terms of the expansion �13�, respectively,
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outer solution,1 − � � 1:��̄��� 
 �2

3
�1/3

��1 − ��2/3 + E�K��1 − ��h,

���� 
 �2

3
�1/3

�1 − ��−1/3 + E�K�
h cot��h�

4
�1 − ��h−1.� �44�

As discussed previously, the above tip behavior of the outer solution fails to comply with the LEFM boundary condition �11�b for K
�0. On the other hand, the LEFM boundary layer solution satisfies the LEFM condition at the tip and possesses the following
asymptotic behavior away from the fracture tip, obtained by expressing Eqs. �39� and �40� in the outer scaling �27�

inner solution, �̂ = K̂−6�1 − �� � 1:

��̄��� 
 �2

3
�1/3

K̂4��K̂−4�1 − ��2/3 + �1K̂−6h�1 − ��h� ,

���� 
 �2

3
�1/3

K̂−2�K̂2�1 − ��−1/3 + �1
h cot��h�

4
K̂−6h+6�1 − ��h−1� .� �45�
Matching to O�1�. The leading terms in the asymptotic expan-
sions of the outer solution near the fracture tip, Eqs. �44�, and of
the inner solution away from the fracture tip, Eqs. �45�, are thus
identical. This term, which is given by the HF eigensolution, ac-
tually corresponds to an intermediate asymptote. Under the
matching condition

K6 � 1 �46�

there exists an overlap domain �out����in with K̂6�1−�in�1
−�out�1, over which the outer and inner solutions share an inter-
mediate asymptote �Fig. 5�.

Thus, the matching condition �46� ensures the existence of the
viscosity-dominated regime, when the O�1� solution on the
lengthscale of the fracture can be approximated by the zero-
toughness solution, whereas the effect of material toughness is
localized to the tip boundary layer.

Matching to O�E�K��. The range of applicability of the zero-
toughness solution and the K-dependent error with which the K
=0 solution approximates the solution when K is small can only
be deduced from an analysis of the next term of order O�E�K�� in
the solution.

Matching of the outer and the inner solutions to order O�E�K��
requires the equivalence of the next-order terms in the asymptotic
expansions �44� and �45�. The latter condition provides an expres-
sion for the unknown small parameter E�K� in the outer expansion
�13� in the form

E�K� = B1Kb = �1K̂b, �47�

where b and B1 can be computed from the constants 	0

0.61524, h
0.138673, and �1
0.03719 according to

b = 4 − 6h 
 3.16796, �48�

Fig. 5 Matching of the inner and outer solutions; structure of

the composite solution
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B1 = �2/3�2h−1	0
3h−2�1 
 0.1076. �49�

The expression �47� for E�K� completely defines the outer next
order, O�E�K��, solution �13�.

Composite Solution. A composite solution, �27�, valid uni-
formly along the fracture to O�E�K��, is obtained by summation of
the O�E�K�� outer solution, Eq. �13�, and the O�1� boundary layer
solution �written in the outer scaling� and subtracting the common
terms given by intermediate asymptotic expansion, Eqs. �44�, or,
equivalently, Eqs. �45�,

�̄��;K� = �̄0��� +
3

2	0
2K

4�̂0�4	0
3

9

1 − �

K6 � − �2

3
�1/3

��1 − ��2/3

+ B1Kb��̄1��� − �1 − ��h� , �50�

���;K� = �0��� +
2	0

3

1

K2�̂0�4	0
3

9

1 − �

K6 � − �2

3
�1/3

�1 − ��−1/3

+ B1Kb��1��� −
h cot��h�

4
�1 − ��h−1� . �51�

�Note that the first line in the expressions for the opening �50� and
for the net pressure �51� corresponds to the O�1� composite solu-
tion.� The solution for the dimensionless fracture length is given
by

	�K� = 	0 + B1	1Kb, �52�

with 	0
0.6152, B1	1
−1.887·10−2, see Eq. �49� and Table 1.
This solution corresponds to a fracture length decreasing with
toughness as Kb. The solution for ��� ;K� is simply obtained from

Eqs. �50� and �52� as the product 	�K��̄�� ;K�.

Discussion
We have established that under condition K6�1, which ensures

existence of the LEFM tip boundary layer, the solution away from
the tip �layer� can be approximated by the outer solution for frac-
ture opening w�x , t�, net-pressure p�x , t�= pf −�o, and fracture
half-length ��t�, whose dependence on time and material param-
eters is given by scaling and that of the toughness parameter K
=K� /E��E� /��Qo�1/4,

w�x,t� =
��1/6Qo

1/2t1/3

E�1/6 �	0 + E�K�	1���̄0��� + E�K��̄1���� ,

p�x,t� =
��1/3E�2/3

1/3 ��0��� + E�K��1���� , �53�

t
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��t� =
Qo

1/2E�1/6t2/3

��1/6 �	0 + E�K�	1� ,

where 	0
0.6152,	1
−0.01887,E�K�
0.1076K3.16796. A prac-
tically useful �yet very accurate� implementation of the small-
toughness solution �53� results from the approximation of the

opening �̄0,1 and pressure �0,1 terms using the series, e.g., �21�,
truncated to contain only three terms: the leading term �correct tip
asymptote�, the first regular term, and the particular solution �cor-
rect inlet behavior�. The explicit formulae are given in Appendix
D.

From a practical point of view, the fracture propagates in the
viscosity-dominated regime, i.e., its solution on the outer length
scale is given by the zero-toughness solution ��0��� ,�0��� ,	0	, if
the next order term �measuring the departure of the solution from
the zero-toughness limit� is small

E�K� = B1Kb � 1. �54�

In this case the effects of toughness are localized to a boundary
layer near the fracture front of thickness K6�, where � is the
fracture half-length. �Note that the condition of existence of a
LEFM tip boundary layer in the overall fracture solution, K6�1,
is automatically met if Eq. �54� is satisfied, since b�6�. If E�K� is
not negligibly small but the matching condition K6�1 still holds,
then the O�E�K�� small toughness outer solution �13� �or in its
dimensional form �53�� with Eq. �47� has to be used. The latter

solution for the normalized opening �=	�̄ and pressure � is
shown in Fig. 6 for various values of toughness K
= �0,0.75,1 ,1.25	. The open circles indicate the numerical finite
toughness solution �6,20�, for K= �1,1.25	. We note from the
comparison with the finite toughness solution that the small-
toughness outer solution remains valid �away from the fracture
tip� for values of toughness K exceeding 1 �when the outer solu-

Fig. 6 Small toughness outer solution for „a… opening � and
„b… net-pressure � for various values of K= ˆ0,0.75,1,1.25‰.
The finite-toughness solution for K=1 and K=1.25 is shown
by open circles „after Adachi †20‡…. The ascending parts of the
pressure curves correspond to the continuation of the outer
solution into the near tip region where the outer solution is no
longer valid and the solution has to be given by the LEFM
boundary layer solution.
tion expansion �13� is expected to diverge�.
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Figure 6�b� �the ascending parts of the outer solution pressure
plots for K�1� clearly shows the breakdown of the outer solution
approximation when extended to the fracture tip dominated by the
LEFM boundary layer. The composite solution, Eqs. �50� and
�51�, plotted on Fig. 7 for K=1 by dashed lines, provides a uni-
form approximation of the opening and net-pressure along the
whole fracture extent �including the tip�, which matches perfectly
with the finite toughness solution �open circles�. �The relatively
“high” values of toughness K have purposefully been chosen for
this Figure, as the solution for K less than 0.5 is practically indis-
tinguishable from the zero toughness-solution.�

For moderate values of the dimensionless toughness, E�K��1,
the solution departs from the zero-toughness solution and its de-
pendence on K cannot be neglected. The semianalytical method
originally proposed by Spence and Sharp �6� and later refined by
Adachi �20� is appropriate to find the solution in this intermediate
regime, where the effects of fluid viscosity and rock toughness are
of the same order. However, as K increases, the fracturing fluid
viscosity becomes eventually irrelevant, M�K��1, where
M�K�=K−4 is a dimensionless viscosity parameter with M���
=0, �21,22�, and the limiting solution corresponding to the invis-
cid fluid limit has to hold. Then the fracture is said to propagate in
the toughness-dominated regime.

A threshold value Ko for the viscosity-dominated regime �K
�Ko� can be determined by imposing an arbitrarily small relative
difference between the O�1� �zero-toughness� and O�E�K�� �small
toughness� outer solutions for the crack opening �52�. For ex-
ample, a 1% relative difference gives Ko= �0.01�	0 /B1	1��1/b


0.70. In terms of dimensional problem parameters, the corre-
sponding condition when toughness is irrelevant for fracture
propagation can simply be stated as

viscosity-dominated regime:
KIc

E�3/4�1/4Qo
1/4 � 0.41. �55�

Similarly, the threshold K�
4.13 for the toughness-dominated
regime �K�K�� can be established requiring the viscosity cor-

−4

Fig. 7 Comparison between the small toughness outer solu-
tion and uniformly valid composite solution for „a… opening �
and „b… net-pressure � for K=1. The composite solution is
shown by dashed line, the rest of the curves as in Fig. 6.
rection M�K�=K to the zero-viscosity solution be bounded by
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1% �22�. In terms of the physical parameters the latter condition
when viscosity is irrelevant for fracture propagation can be stated
as

toughness-dominated regime:
KIc

E�3/4�1/4Qo
1/4 � 2.41. �56�

The thresholds for viscosity Ko
0.70 and toughness K�


4.13 dominated regimes provide the parametric range K
� �Ko ,K�� where both the toughness and the viscosity influence
the propagation of a hydraulic fracture. Figure 8 shows the varia-
tion of dimensionless fracture length in viscosity scaling with di-
mensionless toughness K, in �i� the small-toughness asymptotic
solution, 	=	0+E�K�	1 with 	0
0.6152 and 	1
−0.1754, Eq.
�52�, and �ii� large-toughness asymptotic solution, 	=K−2/3�	0
+M�K�	1� with 	0
0.9324 and 	1
−2.7220 �21,22�. The finite
toughness solution �6,20� is also shown in this plot by open
circles. The range of toughness in which the solution departs from
the small-toughness and large-toughness asymptotic expansions is
thus relatively narrow, 1�K�2.5. Figure 8 also illustrates the
profound influence of the propagation regime on the solution; for
example, it can be observed from Fig. 8 that the fracture length for
K�5 is about half the length of a fracture propagating in the
viscosity dominated regime for the same volume of fluid �injected
at constant rate�.

Conclusions
In this paper, we have obtained the similarity solution for a

fluid-driven fracture of plane-strain geometry propagating in the
viscosity-dominated regime and its next-order correction in the
dimensionless toughness K�1. The structure of the small tough-
ness solution consists of the outer solution away from the fracture
tip, given to the O�1� by the zero-toughness solution, �16,23�, and
of the LEFM boundary layer solution near the fracture tip, given
to the O�1� by the solution of the semi-infinite fluid-driven frac-
ture in a solid with nonzero toughness, �9�. The existence of the
small toughness solution is guaranteed by the matching condition,
K6�1, under which the outer and the boundary layer solutions
match on an intermediate lengthscale, where they posses the same
intermediate asymptote given to the O�1� by the HF eigensolution
�8�. The condition under which the fracture propagates in the
viscosity-dominated regime �i.e., the outer solution is given by the
zero-toughness solution� is established as the smallness condition
of the next-order term in the outer small toughness solution,
E�K�=B1Kb�1 with b
3.168 and B1
0.1076. If the latter con-
dition is not satisfied but the matching condition is met, the small
toughness solution involving the next-order toughness term has to

Fig. 8 Variation of dimensionless fracture half-length � with
toughness K. Zero-toughness, †23,16‡, and zero-viscosity,
†21,22‡, solutions are shown by dashed lines. Small toughness
and large toughness asymptotic solutions are shown by solid
lines. The finite toughness solution „after Adachi †20‡… is shown
by open circles.
be used to capture the fracture propagation.

924 / Vol. 72, NOVEMBER 2005
Even though, the small toughness asymptotic analysis has been
developed in this paper for the plane-strain hydraulic fractures
with a constant volume expansion rate �constant injection rate Qo�
under various assumption �e.g., zero fluid leak-off, zero fluid lag,
etc.�. The main result regarding the dependence of the global hy-
draulic fracture solution on the material toughness is universal
�i.e., independent of fracture geometry, injection rate, spatial
variation in solid parameters, etc.� �28� when expressed in terms

of the tip toughness parameter K̂, see Eqs. �36� and �47�,

� �small-toughness solution� − �zero-toughness solution�
�zero-toughness solution�

�
� E = �1K̂b �b 
 3.168� �57�

This universality is a direct consequence of the fact that the de-
pendence of the global fracture solution on small toughness is
solely determined by the LEFM boundary layer solution �from
matching of the boundary layer solution to the outer solution on
the intermediate lengthscale� and that the latter, when expressed in
terms of the local fracture tip velocity and material parameters, is
invariant of a particular fracture geometry, injection rate, etc. The

tip toughness parameter K̂ in Eq. �57� is expressed in terms of the
local fracture tip velocity vtip, material parameters and the length-
scale � of the global fracture solution �e.g., half-length for a plane-
strain fracture, fracture radius for a penny-shaped fracture� as,
Eqs. �36� and �35�,

K̂ =
K�

E�2/3��1/3vtip
1/3�1/6 �58�

In the case of the plane-strain fracture, using vtip=d� /dt and the
zero-toughness solution for the length �=	0�Qo

1/2E�1/6 /��1/6�t2/3

we recover from Eq. �58� the correspondence to the plane-strain
fracture toughness parameter K up to a O�1� numerical coeffi-

cient, K̂=	0
−1/2� 2

3
�−1/3K. Similarly, one can show the correspon-

dence between K̂ and the penny-shape fracture toughness param-
eter arising from the analysis of Savitski and Detournay �29�.
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Selected Nomenclature

Problem parameters
E� Plane-strain elastic modulus of the solid
��=12� Fluid effective viscosity
K�=4�2/�KIc Solid effective toughness
�o Remote confining stress
Qo Fluid injection rate
Field variables (dimensional and normalized)

t Time
x � Spatial coordinate with the origin at the

crack inlet
w � Crack opening
p � Net pressure in the crack
� 	 Crack half-length
Scaling parameters and Normalized solution

L Fracture lengthscale

 Parameter scaling the net-pressure as a

fraction of the modulus E�
K Dimensionless toughness parameter
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F�� ,K� Normalized solution

��̄�� ,K� ,��� ,K� ,	�K�	
E�K� Dimensionless small toughness

parameter
in the solution asymptotic expansion:
F�� ,K�=F0���+E�K�F1���

F0��� and F1��� Zero-toughness and next-order small
toughness terms

Tip boundary layer solution (dimensional and normalized)

x̂ �̂ Moving spatial coordinate with the
origin
at the crack tip

ŵ �̂ Crack opening in the tip boundary layer

p̂ �̂ Net pressure in the tip boundary layer

vtip Crack tip velocity

�̂ Tip lengthscale �boundary layer
thickness�

K̂= ��̂ /��1/6 Tip dimensionless toughness parameter

Appendix A: Scaling
Let us introduce the scaled coordinate �=x /��t�� �0,1� and the

dimensionless opening �, net pressure �, and crack half-length 	
as �19�,

w�x,t� = 
�t�L�t����,K� ,

p�x,t� = 
�t�E����,K� , �A1�

��t� = L�t�	�K� .

In the above scaling, L�t� is the crack length scale, 
�t� is a small
dimensionless parameter with the meaning of a characteristic
crack aspect ratio, and K�t� is a dimensionless toughness defined
in terms of the volume of injected fluid V�t� and the material
parameters �1�


 =
V

L2 , L = V1/2�E�t

��
�1/6

, K =
K�

E�
� E�t

��V
�1/4

. �A2�

In terms of the alternative scaled opening �̄=� /	 and Eqs. �A1�
and �A2�, the “fluid” Eqs. �3� and �4� and “solid” Eqs. �5� and �6�
governing equations over the half of the crack, �� �0,1�, reduce
to their respective forms

1

6
��̄ +

tV̇

V
�V +

tK̇
K

K�K = − �̄3��

��
, 	−2 = 2�

0

1

�̄d� , �A3�

���,K� = −
1

2�
�

0

1 ��̄��,K�
���

��d��

��2 − �2 ,

�A4�
� → 1:�̄ = K	−1/2�1 − ��1/2.

The terms �V and �M in the lubrication Eq. �A-3�a are defined,
respectively, by

�V =�
�

1

�̄d� +
1

2
��̄ ,

�A5�

�K = K�
�

1 � ��̄

�K
+

1

	

d	

dK
��̄ − �

��̄

��
��d� .

Consequently, Eqs. �A3�–�A5� define the solution in the “viscos-
ity” scaling �A1� and �A2�,

¯
F��,K� = ����,K�,���,K�,	�K�	 , �A6�

Journal of Applied Mechanics
where the dimensionless toughness K plays the role of an evolu-
tion parameter.

For a constant injection rate, V�t�=Qot, the specific expressions
of the scaling parameters �8� and of the lubrication Eq. �10�a
follow directly from Eqs. �A2� and �A3�. Note that, according to

Eq. �A2�, tV̇ /V in the lubrication Eq. �A-3�a can be replaced by

1−4tK̇ /K, while tK̇ /K can be generally defined as function of K
given a particular form of injection law V=V�t� in the definition of

K, Eq. �A-2�c. For constant K, the term tK̇ /K vanishes, and the
lubrication Eq. �A-3�a then assumes the self-similar form, Eq.
�10�a.

Appendix B: Base Functions for the Numerical Method

The pressure base functions � j
* can be obtained from the cor-

responding opening base functions via close-form integration of
elasticity equation �17�c

�0
* =

��1 + h�

2�1/2��1

2
+ h� 2F1�1

2
− h,1;

1

2
;�2� �B7�

for the leading term, and

� j
* =

�− 1� j

B�1

2
+ h,

1

2
+ j��

1

2 2F1�−
1

2
− j − h, j ;

1

2
;�2� − �1

+ h��2
2F1�1

2
− j − h, j + 1;

3

2
;�2��, j = 1, . . . ,n ,

�B8�
for the rest of the terms. �The same polynomials in slightly dif-
ferent notation have been used by Adachi and Detournay �16� for
the zero-toughness solution of a fracture driven by a non-
Newtonian fluid.� In the formulas above ��·� and B�· , · � are Eul-
er’s gamma and beta functions, respectively, and 2F1�· , · ; · ; · � is
Gauss’ hypergeometric function �26�.

In view of Eq. �B7�, the asymptotic behavior of the pressure
leading term in Eq. �21� is given by

A0�0
* =

h cot��h�
4

�1 − ��h−1 +
��1 + h�

22+h�1/2�1 − h���1

2
+ h�

+ O�1 − ��h �1 − �2 � 1� , �B9�
which is consistent with the pressure asymptote prescribed by Eq.
�18�b with �20�.

The base functions for the pressure gradient and the indefinite
integrals of the opening base functions necessary for the represen-
tation of the terms in the lubrication Eq. �17�a, are obtained di-
rectly from Eqs. �B7�, �B8�, �22�, and �23�

d�0
*

d�
= −

2��h + 1�

�1/2��h −
1

2
� � 2F1�3

2
− h,2;

3

2
;�2� , �B10�

d� j
*

d�
=

�− 1� j�j + 1��2j + 2h − 1�

B�1

2
+ h,

1

2
+ j� �2�1 + h�

3
�3

2F1�3

2
− j − h, j

+ 2;
5

2
;�2� + − �1 +

3

�j + 1��2j + 2h − 1��� 2F1�1

2
− j − h, j

+ 1;
3

2
;�2��, j = 1, . . . ,n , �B11�

and the indefinite integrals of the opening base functions are given

by
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�
�

1

�̄ j
*d� =�

�1

2
B�1

2
,1 + h� − � 2F1�1

2
,− h;

3

2
;�2��, j = 0,

1

2
+ h

5

2
+ h

�−
1

2
B�1

2
,2 + h� + � 2F1�1

2
,− 1 − h;

3

2
;�2� + �3

2
+ h���1 − �2�2+h�, j = 1,

�1

2
+ h��3

2
+ h��1 − �2�2+h

2j + h +
1

2

� C2j−1
�h+5/2����

j�2j + 2h + 3�
−

C2j−3
�h+5/2����

�j − 1��2j + 2h + 1��, j = 2, . . . ,n .
� �B12�
Appendix C: Numerical Scheme for the Boundary
Layer Solution

This Appendix outlines the numerical scheme, based on the
earlier work of Garagash and Detournay �9�, used to solve system

of Eqs. �31� on the semi-infinite interval �̂� �0,��. By assuming
that the asymptotic expansions of the solution near the fracture
tip, Eqs. �37� and �38�, and in the far field, Eqs. �39� and �40�, are

appropriate representations of the solution in the intervals �̂

� �0,L0� and �̂� �L� ,�� �L��Lo�, respectively, we compute the

intermediate solution in the interval �̂� �L0 ,L�� as well as the
unknown asymptotic coefficients k0 and �1 numerically via the
following scheme.

We start by dividing the interval �̂� �L0 ,L�� into n−1 subinter-

vals ��̂i , �̂i+1�, i=1, . . . ,n−1, where �̂1=L0 and �̂n=L� and by ap-

proximating the variation of the pressure �̂0 over each interval as
a linear combination of the leading terms in the near tip, Eq. �38�,
and far-field asymptote, Eq. �40�,

�̂0��̂� = ai ln �̂ + bi�̂−1/3, �̂ � ��̂i, �̂i+1�, i = 1, . . . ,n − 1.

�C13�

Outside of the transition interval, the solution for the pressure is
approximated by the respective asymptotic expansion

�̂0��̂� = ��̂00��̂� = ln �̂ + k0 − 16��̂1/2 −
256

3
�̂ ln �̂ , �̂ � �0, �̂1� ,

�̂0���̂� = �̂−1/3 + �14−1h cot��h��̂h−1, �̂ � ��̂n,�� .
�

�C14�

Inversion of the elasticity Eq. �31�b in a form that accommodates
the tip asymptote �31�c yields �9�,

�̂0��̂� = �̂1/2 +
4

�
�

0

�

K��̂,�̂��̂0��̂�d�̂, K��̂,�̂� = ln� �̂1/2 + �̂1/2

�̂1/2 − �̂1/2
�

− 2
�̂1/2

�̂1/2 . �C15�

With the pressure in Eq. �C15� approximated by Eqs. �C13� and
�C14�, we deduce that

�̂0��̂� = �̂1/2 + F00��̂� + 
j=1

n−1 �aiFln��̂,�̂� + biF�2

3
, �̂,�̂��

�̂=�̂ j

�̂=�̂ j+1

+ F0���̂� . �C16�

The various functions entering the above expression for �̂0��̂� are

defined as follows

926 / Vol. 72, NOVEMBER 2005
F00��̂� =
4

�
�Fln��̂, �̂1� + k0F1��̂, �̂1� − 16�F3/2��̂, �̂1�

−
256

3
F2 ln��̂, �̂1�� ,

F0���̂� =
4

�
�F�2/3; �̂, �̂n� + �14−1h cot��h�F�h; �̂, �̂n�� ,

and

Fln��̂,�̂� =�
0

�̂

K��̂,�̂�ln �̂ d�̂ = 2�̂1/2�̂1/2�1 − ln �̂�

+ ��̂ − �̂��1 − ln �̂�ln� �̂1/2 + �̂1/2

�̂1/2 − �̂1/2
� + 2�̂f ln� �̂

�̂
� ,

�C17�

F1��̂,�̂� =�
0

�̂

K��̂,�̂�d�̂ = − 2�̂1/2�̂1/2 − ��̂ − �̂�ln� �̂1/2 + �̂1/2

�̂1/2 − �̂1/2
� ,

�C18�

F3/2��̂,�̂� =�
0

�̂

K��̂,�̂��̂1/2d�̂

=
2

3�− 2�̂�̂1/2 + �̂3/2 ln� �̂1/2 + �̂1/2

�̂1/2 − �̂1/2
� + �̂3/2 ln�1 −

�̂

�̂
�� ,

�C19�

F2 ln��̂,�̂� =�
0

�̂

K��̂,�̂��̂ ln �̂ d�̂ =
1

2
�̂1/2�̂1/2��̂ − 5�̂ + 2��̂

− �̂�ln �̂� +
1

2
��̂2 − �̂2��1

2
− ln �̂�ln� �̂1/2 + �̂1/2

�̂1/2 − �̂1/2
�

+ �̂2f ln� �̂

�̂
� , �C20�

F�h, �̂,�̂� =�
�̂

�

K��̂,�̂��̂h−1d�̂ =
�̂h

h
f�h,

�̂

�̂
�, 0 � h � 1,

�C21�

The functions f�h ,�� and f ln��� in the expression for F�h , �̂ , �̂�,
ˆ ˆ ˆ ˆ
Fln�� ,��, and F2 ln�� ,�� are given by
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f�h,�� =�
0 � h �

1

2
:− �,

1

2
� h � 1:� tan��h� , � = 0,

2h

h − 1/2
�h−1/2 − �h ln�1 + �1/2

1 − �1/2� + B��1

2
+ h,0� + � tan��h� , � � 1,

2h

h − 1/2
− ln 4 − ��1

2
− h� + ��1� , � = 1,

2h

h − 1/2
�h−1/2 − �h ln�1 + �1/2

1 − �1/2� + B1/��1

2
− h,0� , � � 1,

�
f ln��� = �Li2��1/2� − Li2�− �1/2� , � � 1,

�2/4, � = 1,

Li2�− �−1/2� − Li2��−1/2� + �2/2, � � 1,
�

where ��·� is the digamma function, −��1�
0.577216 is Euler’s
constant, B��a ,b�=�0

�ta−1�1− t�b−1dt is the incomplete beta func-
tion, and Li2���=��

0 ln�1− t�t−1dt is the dilogarithm function �26�.
When �̂= �̂, the functions �C17�–�C20� simplify to

Fln��̂, �̂� = ��2

2
+ 2 − 2 ln �̂��̂, F1��̂,�̂� = − 2�̂ ,

F3/2��̂, �̂� =
4

3
�ln 2 − 1��̂3/2, F2 ln��̂, �̂� = ��2

4
− 2��̂2.

Continuity of �̂0��̂� at the grid points yields expression for the
coefficients ai and bi in Eq. �C13� in terms of the values of pres-

sure at the grid points �̂0
�i�=�̂0��̂i�

ai =
�̂i

−1/3�̂0
�i+1� − �̂i+1

−1/3�̂0
�i�

�̂i
−1/3 ln �̂i+1 − �̂i+1

−1/3 ln �̂i

, bi = −
1



ln �̂i�̂0
�i+1� − ln �̂i+1�̂0

�i�

�̂i
−1/3 ln �̂i+1 − �̂i+1

−1/3 ln �̂i

.

�C22�

The values of the net pressure at the end points �̂1 and �̂n are
prescribed from Eq. �C14�

�̂0
�1� = �̂00��̂1�, �̂0

�n� = �̂0���̂n� , �C23�

and are functions of the unknowns coefficients k0 and �1, respec-
tively.

Finally, using Eq. �C16� for �̂0��̂� and gradient of �̂0��̂� given
by Eq. �C13�, the lubrication Eq. �31�a, is evaluated at the mid-

points of the intervals, �̂i+1/2= ��̂i+1+ �̂i� /2, i=1, . . . ,n−1, and are

expressed as linear combinations of �̂0
�i� by means of Eqs. �C22�.

Taking into account Eq. �C23�, this leads to n−1 equations in n

unknowns, which can be taken as �̂0
�2� , . . . ,�̂0

�n−1�, k0, and �1. An
additional equation is needed in the form of the lubrication equa-

tion evaluated at a point outside of the interval ��̂1 , �̂n�, where the
pressure is given by one of the asymptotic expansions, Eqs. �C14�.
In the numerical implementation, we select this point as �̂n+1/2

= �̂n+ ��̂n− �̂n−1� /2 from the interval where the pressure is given by
the far field expansion, Eq. �C-14�b. Summarizing, we obtained
the following system of n nonlinear equations

��̂0
2��̂i+1/2�

d�̂0

d�̂
�

�̂i+1/2

= 1, i = 1, . . . ,n , �C24�

in n unknowns �̂0
�2� , . . . ,�̂0

�n−1�, k0, and �1 which is solved using

the built-in Newton iteration procedure of the commercial soft-
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ware MATHEMATICA, version 4.1 �© 1988–2000 Wolfram Re-
search, Inc.�

Appendix D: An Implementation of the Small-
Toughness Solution (53)

A practically useful numerical implementation of �53� results

from the approximation of the opening �̄0,1 and pressure �0,1

terms using the series expansions, such as �21� for ��̄1 ,�1	, trun-
cated to three terms: the leading term �correct tip asymptote�, the
first regular term, and the particular solution �correct inlet behav-

ior�. Indeed, for the next-order toughness term ��̄1 ,�1	, Fig. 2
shows that the three-term-implementation �n=1 in �21�� is in ex-
cellent agreement with the implementation using 12 terms �n
=10�. The values of the numerical error e�n� in these two imple-
mentations are of order 10−4 and 10−6, respectively �Table 1�.
Similar conclusions can be drawn regarding the implementation of

the zero-order toughness term ��̄0 ,�0	 from �16,20�.
The three-term-implementation of the zero-toughness solution

extracted from �20� is as follows

�̄0 = a01�1 − �2�2/3 + a02�1 − �2�5/3 + a03�2�1 − �2�1/2

+ �2 ln�1 − �1 − �2�1/2

1 + �1 − �2�1/2��;

�0 = b01 2F1�−
1

6
,1;

1

2
;�2� + b02 2F1�−

7

6
,1;

1

2
;�2� + b03�2 − �����

where a01
1.73205, a02
−0.15601, a03
0.13264, b01

0.475449, b02
−0.061178, b03
0.066322. Similarly, the
three-term-implementation of the next-order term in the small-
toughness solution is obtained from �21�–�23�, �B7�, and �B8�, and
Table 1 in the following form:

�̄1 = a11�1 − �2�h + �a12 + a13�
2��1 − �2�1+h + a14�2�1 − �2�1/2

+ �2 ln�1 − �1 − �2�1/2

1 + �1 − �2�1/2��;

�1 = b11 2F1�c11,1;
1

2
;�2� + b12 2F1�c12,1;

1

2
;�2��2

+ b13 2F1�c13,2;
3

2
;�2� + b14�2 − �����

where h
0.13867, a11
0.908354, a12
0.025574, a13


−0.083814, a14
−0.09095, b11
0.170654, b12
0.017132,
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b13
−0.039015, b14
−0.045476, c11
0.36133, c12
−1.63867,
c13
−0.638673.
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Negative Poisson’s Ratios in
Anisotropic Linear Elastic Media
Poisson’s ratio for an anisotropic linear elastic material depends on two orthogonal
directions n and m. Materials with negative Poisson’s ratios for all �n ,m� pairs are
called completely auxetic while those with positive Poisson’s ratios for all �n ,m� pairs
are called nonauxetic. Simple necessary and sufficient conditions on elastic compliances
are derived to identify if any given material of cubic or hexagonal symmetry is completely
auxetic or nonauxetic. When these conditions are not satisfied, the medium is auxetic for
some �n ,m� pairs. Several simple necessary conditions for completely auxetic or non-
auxetic media are derived for a general anisotropic elastic material.
�DOI: 10.1115/1.2042483�
1 Introduction
Poisson’s ratio ��n ,m� in a linear elastic solid for any two

specified orthogonal unit vectors n and m is the ratio of the lateral
contraction in the direction m to the axial extension in the direc-
tion n due to a uniaxial tension applied along the direction n. For
an anisotropic elastic material ��n ,m� depends on the choice of n
and m. Materials which exhibit a negative Poisson’s ratio for at
least one direction pair �n ,m� are referred to as auxetic media
�see, for example, Refs. �1,2��. Obviously, an auxetic medium
responds to an imposed uniaxial tension with a lateral extension
rather than a lateral contraction, and such media may find inter-
esting applications in future technologies as molecular strain am-
plifiers or as sensors �3�. Ting and Chen �4� and Ting �5� have
shown that any anisotropic elastic material can have an arbitrarily
large positive or negative Poisson’s ratio. Thus an auxetic material
with a very large negative Poisson’s ratio can be very useful. For
present purposes we shall refer to materials for which ��n ,m�
�0 for all pairs �n ,m� as completely auxetic media, and we shall
denote media for which ��n ,m��0 for all pairs �n ,m� as non-
auxetic media. In this paper we present rather simple necessary
and sufficient conditions on the elastic compliances for media of
cubic and hexagonal symmetry which determine whether a given
medium in these symmetry classes is either completely auxetic or
nonauxetic. Any material whose compliances do not satisfy these
conditions is merely auxetic, and the auxetic directions may be
found by a straightforward search. For a general anisotropic elas-
tic material, some simple necessary conditions are derived for the
material to be completely auxetic or nonauxetic. We remark that
the compliances, rather than the stiffnesses �as suggested by
Baughman et al. �1��, provide the more natural and, in fact, the
simplest framework for developing the set of necessary and suf-
ficient conditions presented here.

2 Isotropic and Cubic Materials
In a fixed rectangular coordinate system xi �i=1,2 ,3� the linear

elastic strain-stress relations may be written as
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�ij = Sijkl�kl, Sijkl = Sjikl = Sklij , �2.1�

where �ij and �kl are components of the �symmetric� strain and
stress tensors, respectively, and the Sijkl are components of the
elastic compliance tensor. For a thermodynamically stable me-
dium, the compliance tensor is positive definite. If the material in
question is subjected to uniaxial tension along the x1 direction, all
�ij vanish except for �11 so that

�11 = S1111�11, �12 = S2211�11 = S1122�11. �2.2�

Poisson’s ratio �12, which is the ratio of the contraction in the x2
direction to the extension in the x1 direction, is

�12 = −
�22

�11
= −

S2211

S1111
= −

s21

s11
= −

s12

s11
. �2.3�

s�� �� ,�=1,2 , . . . ,6� is the contracted notation for the compli-
ance �6–8�. Since s11 is necessarily positive �thermodynamic sta-
bility�, �12�0 if and only if s12�0, and �12�0 if and only if
s12	0. As the s�� are symmetric in � and �, it is apparent that the
sign of ��n ,m� is the same as the sign of ��m ,n�. The above
remarks are valid in any crystal symmetry class and for any
choice of rectangular frame xi�i=1,2 ,3� for which n is along x1
and m is along x2. In an isotropic medium ��n ,m� is independent
of the pair �n ,m�, so that such a material is completely auxetic
when s12�0 and is nonauxetic when s12	0. Tungsten is of cubic
symmetry, but is elastically isotropic and turns out to be nonaux-
etic �9�.

In the discussion to follow it is convenient to reserve the
x1 ,x2 ,x3 frame for the so-called natural axes of the crystal, i.e.,
the frame or basis relative to which the Sijkl and the s�� are usu-
ally tabulated or displayed as, for example, in Ref. �10� �pp. 140–
141�. Let n, m, and t be a right-hand triad of mutually orthogonal
unit vectors, and let the xi� �i=1,2 ,3� be a new coordinate system
in which the x1� ,x2� ,x3� axes are along n, m, and t, respectively. The
elastic compliance S2211� =S1122� referred to the xi� coordinate sys-
tem is �see Ref. �11��

s12� = S1122� = ninjmkmlSijkl. �2.4�

We denote the contracted compliances in the “primed” coordi-
nates by s��� . For a medium of cubic symmetry in natural coordi-
nates the only nonvanishing s�� are

s11 = s22 = s33, s12 = s23 = s13, s44 = s55 = s66. �2.5�

Equation �2.4� takes the form

s12� = s12 + �s11 − s12 − 1
2s44�P = �1 − 2P�s12 + 1

2QP �2.6�
where
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Q = 2�s11 + s12� − s44, P = n1
2m1

2 + n2
2m2

2 + n3
2m3

2. �2.7�

Hayes and Shuvalov �12� have shown that the value of P is be-
tween 0 and 1/2 for all �n ,m� pairs, so that the value of s12� is
between s12 and Q /4. Thus we obtain the results that a crystal of
cubic symmetry is completely auxetic �s12� �0� when

s12 � 0 and Q � 0, �2.8�

and is nonauxetic �s12� 	0� when

s12 	 0 and Q 	 0. �2.9�

When neither set of inequalities �2.8� and �2.9� is satisfied, the
cubic crystal is auxetic with auxetic direction pairs �n ,m� to be
found by a search requiring that the right-hand side of �2.6� be
positive.

If one examines the literature for published elastic constant data
��9�, p. 102, and �13��, only some measurements of the iron py-
rites reveal a positive s12 �relative to the natural axes for media of
cubic symmetry�; all other cubic media have s12�0. Since Q is
negative for all the pyrite measurements, there are no known
single crystals of cubic symmetry which are completely auxetic.

The list of auxetic media of cubic symmetry �s12�0 and Q
�0� as determined by the data in Ref. �9� includes Au, AgCd,
AgIn, AgMg, AgSn, AgPd, AgZn, brass, Cu, CuZn, CuAl, Cu3Au
�some measurements�, CuGa, CuGe, CuSi, diamond �some�, Au,
InSb, Fe, Pb, Li, LiF, MgO, Ni, Pd, K, pyrites �some�, Ag, Na,
spinel, Th, and Zincblende �some�. The remainder of the cubic
media whose elastic compliances are given in Ref. �9� are non-
auxetic.

3 Hexagonal Symmetry
The only nonvanishing elastic compliances for a crystal of hex-

agonal symmetry �relative to natural axes with the x3 axis being
the axis of sixfold symmetry� are

s11 = s22, s13 = s23, s12, s33, s44 = s55, s66 = 2�s11 − s12� .

�3.1�

Because the elastic compliance tensor is invariant under rotation
about the x3 axis �i.e., the hexagonal media are elastically isotro-
pic in the basal plane, so that the choice of the x1 ,x2 axis pair is
arbitrary�, without loss of generality we may take n2=0, with

n1 = sin 
, n3 = cos 
 , �3.2�

where 
 is the angle between n and x3. Any unit vector m normal
to such a choice for n has components

m1 = cos 
 cos �, m2 = − sin �, m3 = − sin 
 cos � , �3.3�

where 0	��2�. Equation �2.4� now takes the form

s12� = �s11 + s33 − 2s13 − s44�n3
2m3

2 + s12n1
2m2

2 + s13�n3
2 + m3

2� .

�3.4�

Using �3.2�, �3.3�,�3.4� can be written as

s12� = �s13 cos2 2
 + 1
4Q sin2 2
�cos2� + �s12 sin2 


+ s13 cos2 
�sin2 � , �3.5�

where

Q = �s11 + s33 + 2s13 − s44� . �3.6�
From �3.5� it is easily shown that a hexagonal medium is com-
pletely auxetic �s12� �0 for all �n ,m� pairs� provided that

s12 � 0, s13 � 0, and Q � 0, �3.7�
while the medium is nonauxetic when
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s12 	 0, s13 	 0 and Q 	 0. �3.8�

When neither �3.7� nor �3.8� is satisfied, the medium is auxetic
and the auxetic directions may be found numerically using Eq.
�3.5�.

Of the single crystals of hexagonal symmetry whose elastic
compliance data are listed in Ref. �9�, only apatite and Zn have
s12�0; no hexagonal media for which s13�0 have been reported
in the literature. Q�0 for all hexagonal media with the exception
of Hg �some measurements�. As a result the tabulated elastic con-
stant data shows that all single crystals of hexagonal symmetry
are nonauxetic with the exception of apatite, Zn, and Hg �some�,
which are simply auxetic.

4 General Anisotropic Materials
For anisotropic elastic materials other than cubic and hexagonal

symmetries, let

n = �cos  sin 


sin  sin 


cos 

� , �4.1�

and

m = cos ��cos  cos 


sin  cos 


− sin 

� + sin �� sin 

− cos 

0
� . �4.2�

They reduce to �3.2� and �3.3� when =0. The s12� in �2.4� is a
homogeneous function of mi �i=1,2 ,3� of degree two. With the n
and m defined above it has the expression

s12� = A cos2 � + B sin2 � + D sin � cos � , �4.3�

where A ,B ,D depend on s��, , and 
, but are independent of �.
When �=0 �or � /2�, �4.3� gives s12� =A �or B�. Hence we have

the result that

A � 0, B � 0, �4.4�

if the material is completely auxetic and

A 	 0, B 	 0, �4.5�

if the material is nonauxetic. These are necessary �not sufficient�
conditions. However, they are necessary and sufficient conditions
when D=0, which is the case for hexagonal materials shown in
�3.5�. When D�0, �4.3� can be written as

s12� = 1
2 ��A + B� + �A − B�cos 2� + D sin 2�� =

1

2
��A + B�

+ R cos 2�� − ��� , �4.6�

where

R = ��A − B�2 + D2, cos 2� = �A − B�/R, sin 2� = D/R .

�4.7�

In conjunction with �4.4� and �4.5�, the material is completely
auxetic if

A + B − R � 0 or 4AB � D2, �4.8�

and nonauxetic if

A + B + R 	 0 or 4AB � D2. �4.9�

Equations �4.4� and �4.8� are necessary and sufficient conditions
for the material to be completely auxetic while �4.5� and �4.9� are
necessary and sufficient conditions for the material to be nonaux-
etic.

With the exception of hexagonal materials, A, B, and D have

complicated expressions in terms of s��, , and 
, even for the
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cubic materials. Nevertheless, it can be shown that, for the cubic
materials, �4.4�, �4.8� and �4.5�, �4.9� reduce to �2.8� and �2.9�,
respectively.

By considering a special n, simple necessary conditions for a
general anisotropic elastic material to be completely auxetic or
nonauxetic can be derived. For instance, let

n3 = 1, n1 = n2 = 0. �4.10�
We can assume

m1 = cos �, m2 = sin �, m3 = 0. �4.11�
Equation �2.4� gives

s12� = s31 cos2 � + s32 sin � + s36 sin � cos � . �4.12�
This is in the form of �4.3� so that �4.4�, �4.8� or �4.5�, �4.9� apply.
By considering the case n1=1 and n2=1 we obtain two more
equations similar to �4.12�. We then have the result that

s12 � 0, s23 � 0, s31 � 0,
�4.13�

4s12s13 � s14
2 , 4s21s23 � s25

2 , 4s31s32 � s36
2 ,

if the material is completely auxetic, and

s12 	 0, s23 	 0, s31 	 0,
�4.14�

4s12s13 � s14
2 , 4s21s23 � s25

2 , 4s31s32 � s36
2 ,

if the material is nonauxetic. These are necessary �not sufficient�
conditions. Although they cannot positively identify if a material
is completely auxetic or nonauxetic, they can be used to identify if
a material is not completely auxetic or not nonauxetic if any one
of the six conditions in �4.13� or �4.14� is violated. In particular,
any one of the following conditions,

4s12s13 � s14
2 , 4s21s23 � s25

2 , 4s31s32 � s36
2 , �4.15�

is a necessary and sufficient condition for the material to be nei-
ther completely auxetic nor nonauxetic.

Another special n is

n1 = n2 = 1/�2, n3 = 0. �4.16�
If we let

m1 = − m2 = 1/�2, m3 = 0, �4.17�
�2.4� gives

s12� = 1
4 �s11 + s22 + 2s12 − s66� . �4.18�

By a permutation of the coordinate system x1 ,x2 ,x3, two more
equations similar to �4.18� can be obtained. If we define
Q1 = s22 + s33 + 2s23 − s44,

Journal of Applied Mechanics
Q2 = s33 + s11 + 2s31 − s55, �4.19�

Q3 = s11 + s22 + 2s12 − s66,

we have

Qi � 0 �i = 1,2,3� , �4.20�
if the material is completely auxetic, and

Qi 	 0 �i = 1,2,3� , �4.21�
if the material is nonauxetic.

In the special case of cubic materials, Q1=Q2=Q3 and we re-
cover �2.7�. For hexagonal materials, Q1=Q2=Q as in �3.6� while
Q3=4s12 in view of �3.1�.

Of course, other special n can be used to derive more necessary
conditions.

It is interesting to note that, even though �4.13�, �4.20� and
�4.14�, �4.21� are necessary, not sufficient, conditions for a general
anisotropic material, they are necessary and sufficient conditions
for cubic and hexagonal materials. Some of the conditions in these
equations are either redundant or identical for cubic and hexago-
nal materials.
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Nanomechanics of Crack Front
Mobility
Minimum energy paths for unit advancement of a crack front are determined by reaction
pathway sampling, thus providing the reaction coordinates for the analysis of crack tip
mechanics in ductile and brittle materials. We compare results on activation energy
barrier and atomic displacement distributions for an atomically sharp crack in Cu, where
one observes the emission of a partial dislocation loop, and in Si, where crack front
extension evolves in a kink-like fashion. �DOI: 10.1115/1.2047607�
1 Introduction
Is it possible to study how a sharp crack evolves in a crystal

lattice without actually driving the system to the point of instabil-
ity? By this we mean determining the pathway of crack front
motion while the lattice resistance against such displacement is
still finite. Despite a large number of molecular dynamics �MD�
simulations on crack tip propagation �e.g., see �1��, this particular
issue has not been examined. Most studies to date have been
carried out in an essentially 2D setting, with a periodic boundary
condition imposed along the direction of the crack front. In such
simulations the crack tip is sufficiently constrained that the natural
response of the crack front cannot be investigated. Besides the
size constraint on the crack front, there is also the problem that in
direct MD simulation one frequently drives the system to instabil-
ity, resulting in abrupt crack-tip displacements which make it dif-
ficult to characterize the slow crack growth by thermal activation.

We have developed an approach capable of probing crack front
evolution without subjecting the system to critical loading. This
involves using reaction pathway sampling to probe the minimum
energy path �MEP� �2� for the crack front to advance by one
atomic lattice spacing, while the imposed load on the system is
below the critical threshold. We have applied this method to char-
acterize the atomistic configurations and energetics of crack ex-
tension in a metal �Cu� �3� and a semiconductor �Si� �4�. In this
report we will compare the results of these two studies to show
how ductility or brittleness of the crystal lattice can manifest in
the mechanics of crack front deformation at the nanoscale.

Consider a 3D atomically sharp crack front which is initially
straight, as shown in Fig. 1�a�. Suppose we begin to apply a
mode-I load in incremental steps. Initially the crack would not
move spontaneously because the driving force is not sufficient to
overcome the intrinsic lattice resistance. What does this mean?
Imagine a final configuration, a replica of the initial configuration
with the crack front translated by an atomic lattice spacing in the
direction of crack advancement. At low loads, e.g., KI� as shown in
Fig. 1�b�, the initial configuration �open circle� has a lower energy
than the final configuration �closed circle�. They are separated by
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an energy barrier which represents the intrinsic resistance of the
lattice. As the loading increases, the crack will be driven toward
the final configuration; one can regard the overall energy land-
scape as being tilted toward the final configuration with a corre-
sponding reduction in the activation barrier �see the saddle-point
states �shaded circle� in Fig. 1�b��. As the load increases further
the biasing becomes stronger. So long as the barrier remains finite
the crack will not move out of its initial configuration without
additional activation, such as from thermal fluctuations. When the
loading reaches the point where the lattice-resistance barrier dis-
appears altogether, the crack is then unstable at the initial configu-
ration; it will move without any thermal activation. This is the
athermal load threshold, denoted by KIath in Fig. 1�b�. In our simu-
lation, we study the situation where the applied load is below this
threshold, thereby avoiding the problem of a fast moving crack
that is usually over-driven.

The cracks in Cu and Si that we will compare are both semi-
infinite cracks in a single crystal, with the crack front lying on a

�111� plane and running along the �1̄10� direction. The simulation
cells consist of a cracked cylinder cut from the crack tip, with a
radius of 80 Å. The atoms located within 5 Å of the outer surface
are fixed according to a prescribed boundary condition, while all
the remaining atoms are free to move. To probe the detailed de-
formation of the crack front, the simulation cell along the cylinder
is taken to be as long as computationally feasible, 24 �Cu� and 20
�Si� unit cells. A periodic boundary condition is imposed along
this direction. With this setup, the numbers of atoms in the system
are 103,920 �Cu� and 77,200 �Si�. For interatomic potentials we
use a many-body potential of the embedded atom method type for
Cu �5�, for which the unstable stacking energy has been fitted to
the value of 158 mJ/m2, given by an ab initio calculation, and a
well-known three-body potential model proposed by Stillinger
and Weber �SW� for Si �6�.

2 MEP for Crack Blunting in Cu
Prior to applying reaction pathway sampling, we first determine

the athermal energy release rate, denoted by Gemit �corresponding
to KIath in Fig. 1�b��. This is the critical value at which the acti-
vation energy barrier for dislocation nucleation vanishes, or
equivalently a straight dislocation is emitted without thermal fluc-
tuations �7,8�. As detailed in �3�, the athermal load is determined
to be KIemit=0.508 MPa�m �or Gemit=1.629 J /m2 based on the
Stroh solution �9�� for the nucleation of a Shockley partial dislo-

cation across the inclined �1̄1̄0� slip plane. So long as the applied

load is below KIemit the crack front will remain stable. It is in such
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a state that we will probe the reaction pathway for dislocation
nucleation using the method of nudged elastic band �NEB� �2�.
The quantity we wish to determine is the MEP for the emission of
a partial dislocation loop from an initially straight crack front.
MEP is a series of atomic configurations connecting the initial and
final states. For this study the initial configuration is a crack front
as prescribed by the Stroh solution which is then relaxed by en-
ergy minimization. The final configuration contains a fully formed
straight Shockley partial dislocation at the same level of loading
as the initial state. This is obtained by first loading the simulation
cell at a level above the threshold Gemit so that a partial disloca-
tion could instantaneously nucleate. Then the loading is reduced
to the level of the initial state �below Gemit� thus generating a
configuration with an embedded partial dislocation. To find the
MEP 15 intermediate replicas of the system which connect the
initial and final states are constructed. We choose intermediate
replicas containing embryonic loops that result from the relaxation
of a straight crack front, allowing for the nucleation of a curved
dislocation. The relaxation of each replica is considered con-
verged when the potential force vertical to the path is less than a

Fig. 1 „a… Schematics of a 3D atomically sharp crack front un-
der a mode-I load KI; „b… energy landscape of the crack system
at different loads „KI�<KIG<KI�<KIath…. Open circle represents
the initial state of a straight crack front under an applied load
KI, closed circle is the final state after the crack front uniformly
advances by one atomic spacing „under the same load KI as
the initial state…, and shaded circle corresponds to the saddle-
point state in between.
prescribed value, 0.005 eV/Å in our case.

Journal of Applied Mechanics
The sequence of replicas defines a reaction coordinate in the
following sense. Each replica in the sequence is a specific con-
figuration in 3N configurational hyperspace, where N is the num-
ber of movable atoms in the simulation. For each replica we cal-
culate the hyperspace arc length l between the initial state xi

3N and
the state of the replica x3N. The normalized reaction coordinate s
is defined to be s� l / lf, where lf denotes the hyperspace arc
length between the initial and final states.

The relaxed energy of any replica is a local minimum within a
3N-1 hyperplane vertical to the path. By definition the MEP is a
path that begins at �E=0�s=0�, where �E is the relaxed energy
measured relative to the energy of the initial state. Along the path
�reaction coordinate s� �E will vary. The state with the highest
energy on this path is the saddle point, and the activation energy
barrier is the energy difference between the saddle point and the
initial state. Figure 2 shows the MEP for the nucleation of a dis-
location loop from the crack front in Cu, loaded at G=0.75Gemit.
Notice that at this loading the final state is strongly favored over
the initial state. Figure 2 shows clearly the presence of a lattice-
resistance barrier at this particular loading.

To visualize the variation of atomic configurations along the
MEP, we turn to displacement distributions between atom pairs
across the slip plane. Figure 3�a� is a contour plot of the shear
displacement distribution along the crack front at the saddle-point
state. One can see clearly the shape of a dislocation loop bowing
out; the profile of b /2 shear displacement is a reasonable repre-
sentation of the locus of dislocation core. Also this is an indication
that the enclosed portion of the crack front has been swept by the
Shockley partial dislocation loop. Besides shear displacement,

normal, or opening displacement, in the direction along x3 , �1̄1̄1�,
is also of interest. The corresponding distribution is shown in Fig.
3�b�. One sees that large displacements are not at the center of the
crack front. In Figs. 3�a� and 3�b� we have a detailed visualization
of the crack front evolution in three dimensions. The largest dis-
placements are indeed along the crack front but they are not of the
same character; the atoms move in a shear mode in the central
region and in an opening mode on the two sides.

3 MEP for Crack Advancement in Si
Turning to Si, we first repeat the determination of athermal load

for crack extension in the �111� plane; KIath=0.88 MPa�m. Since
Si is a brittle solid, a useful reference load is KIG, the Griffith
value at which the initial and final states are at the same energy
�see Fig. 1�b��, the latter being identical to the initial state except

Fig. 2 MEP of dislocation loop emission in Cu at a load of G
=0.75Gemit †3‡
the crack front advances one atomic spacing in the propagation
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direction. Direct simulation gives KIG=0.646 MPa�m. This value
is lower than the athermal load KIath, a manifestation of the lattice-
trapping effect �10�. Being a brittle solid, the relevant deformation
in crack front advancement in Si is bond rupture rather than bond
shearing as in the case of a ductile material such as Cu. Our
simulation cell contains 20 bonds along the initially straight crack
front. We find that the most energetically favored pathway for the
front to advance by one atomic spacing is the breaking of the 20
bonds sequentially. At a load equal to the Griffith value, the MEP
we obtain is shown in Fig. 4. A slightly different reaction coordi-
nate is used in this case, with integer s labeling a locally equili-
brated state with s broken bonds on the crack front. One sees the
energy variation is a series of barriers, each one corresponding to
the rupture of a bond along the crack front.

Figure 5 shows the opening displacement distribution in Si
across the �111� cleavage plane. We see a new feature in the out-
line of displacements of intermediate magnitude �dark-gray line�;
in the region ahead of the crack front the distribution of these
displacements has the shape of a rectangular wedge protruding in
the direction of crack front advancement. The presence of a wedge
shape suggests a kink mechanism of crack advancement, namely,

Fig. 3 Contour of „a… shear displacement „normalized by the
Burgers vector of a partial dislocation b=1.476 Å… and „b…
opening displacement „normalized by the interplanar spacing
h=2.087 Å… across the slip plane at the saddle-point state †3‡
Fig. 4 MEP of crack extension in Si at the Griffith load KIG †4‡
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nucleation of a local kink distortion followed by spreading across
the entire crack front. It is significant that this behavior is not seen
in Fig. 3�b�. Taking Cu to be a prototypical ductile material, we
see that while the crack opening still occurs at the front, the large
normal displacements lie outside the central region enclosed by
the emerging dislocation loop. We attribute this feature to a mode-
switching, or shear-tension coupling, process. The initially large
opening displacements in the region swept by the emerging loop
are relaxed by giving way to large shear displacements, which are
then carried away by the emitted dislocation loop.

It is relevant to interpret the behavior of atomic displacements
at the transition state in Cu and Si on the basis of the nature of
interatomic bonding in these two materials. One expects that the
crack front response in Cu should reflect delocalized metallic
bonding while that in Si should correspond to directional, local-
ized covalent bonding. In terms of characteristic features of the
energy landscape along the reaction path, we see for Cu �in Fig. 2�
a rather smooth MEP with a single major nucleation barrier, indi-
cating that crack advancement involves a concerted motion of
atoms to overcome this barrier by thermal activation. In contrast
MEP in Si reveals the existence of significant secondary barrier
�cusps in Fig. 4� which should be a general feature of covalently
bonded crystals. In this case crack extension proceeds via indi-
vidual bond breakings, a series of thermally activated events of
kink-pair formation, and lateral kink migration along the front. It
is of interest to point out the crack front mobility is not only
controlled by kinks at the atomic scale as demonstrated in this
work; acoustic emission and fractographic measurements have in-
dicated the crack advancement at the mesoscopic scale is also
governed by the kink mechanism which involves a process of
unzipping along the crack front �W. W. Gerberich, private com-
munication; �11��.

The fact that kink mechanism appears to play a central role in
crack front mobility raises an interesting question of the implica-
tions of structural similarity between the crack front, acting as the
core of a sharp crack, and the core of a dislocation, both being
“line defects” in a crystal lattice. It is rather well known that
dislocation mobility in a directionally bonded crystal like Si is
governed by thermal activation of nucleation and migration of
kink pairs �12�. The present results showing that a similar mecha-
nism also operates in crack front advancement reinforces the no-
tion that mobility fundamentally depends on crystal structure and
chemical bonding. From this perspective the appearance of kink-
like structure in Fig. 5 is perhaps to be expected. Since dislocation
mobility and crack-tip extension are both active topics for model-
ing and simulation, recognition of their underlying connections
could lead to a broader appreciation of the role of structure and
bonding �13� in controlling both phenomena.
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Frequency Analysis of the Tuned
Mass Damper
The damping properties of the viscous tuned mass damper are characterized by dynamic
amplification analysis as well as identification of the locus of the complex natural fre-
quencies. Optimal damping is identified by a combined analysis of the dynamic amplifi-
cation of the motion of the structural mass as well as the relative motion of the damper
mass. The resulting optimal damper parameter is about 15% higher than the classic
value, and results in improved properties for the motion of the damper mass. The free
vibration properties are characterized by analyzing the locus of the natural frequencies in
the complex plane. It is demonstrated that for optimal frequency tuning the damping ratio
of both vibration modes are equal and approximately half the damping ratio of the
applied damper, when the damping is below a critical value corresponding to a bifurca-
tion point. This limiting value corresponds to maximum modal damping and serves as an
upper limit for damping to be applied in practice. �DOI: 10.1115/1.2062867�
1 Introduction
An efficient means to introduce additional damping into struc-

tures and machinery is via a combined mass-damper system that is
tuned to act in resonance. The resonance generates a relative mo-
tion of the damped mass that is sufficient to enable the damper to
extract the necessary energy. In practice this means that the mo-
tion of the structural mass should be reduced, while keeping the
relative motion of the damper mass within acceptable bounds. The
idea of reducing dynamic motion via a resonating mass is due to
Frahm �1�, who proposed the use of a spring-mass system. In this
proposal there was no damper, and thus the function of the system
was to balance the external load without absorbing energy. It was
demonstrated by Ormondroyd and Den Hartog �2� that the intro-
duction of a damper not only dissipated energy, but also increased
the frequency interval over which the device is active. This led to
development of a design procedure that is still in use. This proce-
dure is based on analysis of the dynamic amplification of the
motion of the structural mass and consists of two separate steps:
tuning of the frequency of the damper, and selection of the opti-
mal level of damping. The frequency tuning is based on the ob-
servation that there are two frequencies, where the dynamic am-
plification is independent of the applied damping, and optimal
tuning is determined by setting the dynamic amplification at these
two frequencies equal, Den Hartog �3�. The selection of the damp-
ing level is based on a more pragmatic argument that implies an
average of the level that would give a local maximum of the
dynamic amplification at each of the two neutral frequencies,
Brock �4�. The use of an average implies that the resulting damp-
ing level does in fact not have the maximum properties used in its
derivation, and as demonstrated in the following simultaneous
consideration of the motion of the structural mass and the relative
motion of the damped mass leads to the identification of a higher
level of damping as optimal.

The original formulation of the tuned vibration damper dealt
with excitation by a force with harmonic time variation. This
problem has later been extended to excitation via motion of the
base and to random load with wide band characteristics. The main
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results of these developments are summarized in �5–7�. In the case
of random load the excitation has been assumed in the form of a
white noise process, and optimal tuning and damping level have
been determined in explicit form by minimizing the variance of,
e.g., the displacement of the structural mass. In all cases the result
has indicated a considerably lower level of damping to be optimal
for random white noise load. This may be due to the influence of
the high frequency excitation implied by the assumption of white
noise, which has a spectral density extending at constant value to
infinitely high frequencies. A more realistic representation would
bring more emphasis on the frequencies around resonance, but
preclude explicit determination of optimum values. However, an
impression of the random response properties can be gained from
the complex natural frequencies of the system, and the present
paper gives a detailed analysis of these. Introduction of the addi-
tional mass leads to the introduction of two frequencies instead of
the original one, and with the introduction of damping these fre-
quencies move into the positive imaginary half-plane. It is dem-
onstrated that for optimal frequency tuning the two branches of
the complex locus of the natural frequencies meet at a bifurcation
point. For damping levels lower than the bifurcation value the
modes of the system have identical damping ratio, and the bifur-
cation point corresponds to maximum modal damping. Thus, this
level of damping serves as an upper limit of the damping to be
introduced into the system.

2 Basic Equations
The basic model of a viscous tuned mass damper is illustrated

in Fig. 1. The figure shows the primary structure with mass m0
and stiffness k0. The primary structure is assumed to have negli-
gible damping. The secondary structure consists of a mass m con-
nected to the primary mass by a spring k and a viscous damper c.
It is convenient to formulate the equations of motion from the
energy balance equation, because this procedure can be extended
in a fairly straightforward manner to multiple dampers on flexible
structures. The energy balance equation is

d

dt
�Ekin + Epot� = − D �1�

where Ekin and Epot are the kinetic and potential energy, respec-
tively, and D is the rate of energy dissipation. It is convenient to
describe the motion of the system in terms of the absolute motion
x0 of the structural mass m0 and the relative motion xd of the
damper mass m with respect to the structural mass. The terms in

the energy equation then are
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Ekin = 1
2m0ẋ0

2 + 1
2m�ẋ0 + ẋd�2

Epot = 1
2k0x0

2 + 1
2kxd

2 �2�

D = cẋd
2

The equations of motion of the two masses follow from isola-
tion of the factors to ẋ0 and ẋd in the energy balance equation.

m0ẍ0 + m�ẍ0 + ẍd� + k0x0 = F�t�
�3�

m�ẍ0 + ẍd� + cẋd + kxd = 0

The equations of a harmonic response analysis are obtained by
representing the response and the load in terms of harmonic com-
ponents with angular frequency �

x�t� = xei�t, F�t� = Fei�t �4�

where x�t� is either x0�t� or xd�t�. The harmonic response is then
determined from

�k0 − �m0 + m��2 − �2m

− �2m k − �2m + i�c
��x0

xd
� = �F

0
� �5�

From this system of equations the complex amplitude of forced
response of the structural mass is found as

x0

F
=

k − �2m + i�c

�k0 − �2�m0 + m���k − �2m + i�c� − �4m2 �6�

and the frequency equation for free vibrations follows from the
determinant as

�k0 − �2�m0 + m���k − �2m + i�c� − �4m2 = 0 �7�

The response equation �6� forms the basis of the classical tuned
mass damper analysis by Den Hartog �3�, while Eq. �7� is the
main instrument of the analysis of the natural frequencies pre-
sented later.

The tuned mass damper is characterized by the normalized pa-
rameters

�0
2 =

k0

m0
, � =

m

m0

�8�

�d
2 =

k

m
, �d =

c

2�km

Typically the mass ratio � is selected, and the secondary system is
then described by the frequency ratio �d /�0 and the damping
ratio �d of a rigidly mounted damper. In terms of these parameters
the complex amplitude equation �6� takes the form

x0

F/k0

=
�0

2��d
2 − �2 + 2i�d�d��

�4 − ��0
2 + �1 + ���d

2��2 + �0
2�d

2 + 2i�d�d���0
2 − �1 + ���2�

�9�

It follows from the last of the equations in �5� that the relative

Fig. 1 Tuned mass damper
motion of the damper is
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xd

F/k0

=
�0

2�2

�4 − ��0
2 + �1 + ���d

2��2 + �0
2�d

2 + 2i�d�d���0
2 − �1 + ���2�

�10�
The corresponding normalized form of the frequency equation �7�
is

�4 − 2i�d�1 + ���d�3 − ��0
2 + �1 + ���d

2��2 + 2i�d�0
2�d� + �0

2�d
2

= 0 �11�
While the forced response at a single frequency is given by Eqs.
�9� and �10�, the free vibration response including the modal
damping follows from the frequency equation �11�.

In the limit of infinite damping ratio �d the the damper con-
strains the relative motion xd of the damper mass, and thereby
creates the effect of a single mass m0+m. The frequency of the
limiting situation of a locked damper will be denoted ��. It is
given by

�� =� k0

m0 + m
=

�0

�1 + �
�12�

This frequency plays a central role in the properties of a tuned
mass damper as demonstrated in the following.

3 Dynamic Amplification Analysis
Traditionally the tuning of frequency and damping has been

based on the dynamic amplification of the structural mass, given
by the absolute value of Eq. �9�. In this section the classical analy-
sis is supplemented by consideration of the dynamic amplitude of
the relative motion of the damper. In the mechanical design of
tuned mass dampers the relative motion of the damper mass plays
an important role as the magnitude may be restricted due to prac-
tical considerations.

3.1 Frequency Tuning. The dynamic amplification factor �9�
is shown as a function of frequency in Fig. 2. It is a remarkable
fact that there are two excitation frequencies �A and �B around
the natural frequency �0 for which the magnitude of the response
is independent of the damping parameter c. The neutral frequen-
cies �A and �B are found by studying the structure of the dynamic
amplification formula �9�

x0

F/k0
=

A + 2i�dB

C + 2i�dD
⇒ � x0

F/k0
�2

=
A2 + �2�d�2B2

C2 + �2�d�2D2 �13�

For the magnitude to be independent of �d the following ratios

Fig. 2 Dynamic amplification for �=0.05, �d=�0 and �: „¯… 0,
„—… 0.1, „-·-… 0.3, „---… �
must be equal
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A2

C2 =
B2

D2 ⇒
A

C
= ±

B

D
�14�

corresponding to

AD = ± BC �15�

Substitution of A B, C, and D gives, after canceling the com-
mon factor � /�d,

�4 − ��0
2 + �1 + ���d

2��2 + �0
2�d

2 = ± ��d
2 − �2���0

2 − �1 + ���2�
�16�

Use of the plus sign leads to the root �=0. This is the static
solution where there is no motion, and therefore no damping
force. Use of the minus sign leads to the following quadratic
equation in �A

2 and �B
2

�2 + ���4 − 2��0
2 + �1 + ���d

2��2 + 2�0
2�d

2 = 0 �17�

The roots of this quadratic are denoted �A
2 and �B

2 corresponding
to the points in Fig. 2. The roots are not needed explicitly at this
point, but only in the form of their sum following from the coef-
ficients of the equation

�A
2 + �B

2 =
2

2 + �
��0

2 + �1 + ���d
2� �18�

The optimal damping parameters are determined by specifying
equal magnitude of the dynamic amplification factor at the fre-
quencies �A and �B. At these frequencies the response magnitude
is independent of �d, and the relevant response can therefore be
determined for the limit �d→�, corresponding to the combined
mass m0+m moving as a unit

� x0

F/k0
�

A,B

=
±1

1 − �1 + ����/�0�2 �19�

where plus applies to �A below the resonance frequency �0, while
the minus applies to �B above. Thus equal dynamic amplification
at �A and �B requires

1

1 − �1 + ����A/�0�2 =
− 1

1 − �1 + ����B/�0�2 �20�

Multiplication with the denominators gives

�A
2 + �B

2 =
2�0

2

1 + �
�21�

This is the condition that the points A and B have the same dy-
namic amplification. The tuning frequency �d now follows from
setting the right-hand sides of Eqs. �18� and �21� equal.

�d =
�0

1 + �
�22�

This is the classic tuning frequency �3�, and as demonstrated in
Sec. 4.2 this tuning also leads to desirable modal damping prop-
erties.

3.2 Optimal Damping Ratio. The dynamic amplification at
the frequencies �A and �B is determined by considering the qua-
dratic equation �17� for the special tuning �22�. In terms of the
frequency ��= ��0�d�1/2 corresponding to a locked damper the
equation is

�4 − 2��
2 �2 +

2��
4

2 + �
= 0 �23�

with the solution

	�A,B

��

2

= 1 ±� �

2 + �
�24�

Substitution of these frequencies back into the dynamic amplifi-

cation expression �19� for infinite damping then gives
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� x0

F/k0
�

A,B

=�2 + �

�
�25�

In practice the mass of the secondary structure is most often con-
siderably less than that of the primary structure, and thus the
dynamic amplification at the neutral frequencies is approximately
�2/��1/2, i.e., inversely proportional to the square root of the mass
ratio.

A simple and direct way to determine a suitable value of the
damping ratio �d consists in selecting a frequency located cen-
trally in the interval between �A and �B, and selecting �d such that
the dynamic amplification is equal at these three frequencies. It is
convenient to use the frequency �� of the system with locked
damper introduced in Eq. �12�. In fact it follows from Eq. �21�
that ��

2 is also the arithmetic mean of the neutral frequencies �A
2

and �B
2 . The complex response amplitude and the dynamic ampli-

fication factor at �� follow from Eq. �9� as

x0

F/k0
=

� − 2i�d
�1 + �

�
⇒ � x0

F/k0
�

��

2

=
�2 + �2�d�2�1 + ��

�2

�26�

By equating the dynamic amplification at �� to that at �A and �B
given by Eq. �25� the optimal damping ratio is determined as

�opt
2 =

1

2

�

1 + �
�27�

This value is larger than that of the classic presentation of Den
Hartog �3�, originally derived by Brock �4�. In the formula pro-
posed by Brock the optimal parameter �d

2 is found as the arith-
metic mean of the values that give maximum dynamic amplifica-
tion at the frequencies �A and �B, respectively. This leads to

�classic
2 =

3

8

�

1 + �
�28�

The value �opt is seen to be 15% larger than �classic, and it will be
demonstrated later that this implies 15% larger damping of the
modes. It is interesting to note that in practical design of tuned
mass dampers values of the damping parameter larger than �classic
are often used �8�.

The dynamic amplification for mass ratio �=0.05 is illustrated
in Fig. 3 for three different values of the damping parameter. The
full line corresponds to �opt, while the dashed line corresponds to
the classic value �classic. It is seen that the classic value of the
damping parameter leads to a trough between the neutral values at
�A and �B. It is demonstrated later that with the frequency tuning
determined by Eq. �22� the modal damping attains a maximum

�

Fig. 3 Dynamic amplification of structural mass for �=0.05
and damping parameter: „---… �classic, „—… �opt, „-·-… �*
value for �*= 2�opt. This value of the damping parameter may be
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considered as an upper value for applications, and the correspond-
ing dynamic amplification is also shown in the figure. It is seen
that this value leads to a peak between the neutral frequencies �A
and �B. The value �opt leads to a fairly level behavior of the curve
between the neutral frequencies.

The choice of the value �27� of the damping parameter as op-
timal is further supported by considering the relative motion of the
damped mass. It is seen from Eq. �10� that the relative motion of
the damped mass xd is independent of the damping at the fre-
quency ��. When the damper frequency is tuned according to Eq.
�22� the motion of the damped mass at the neutral frequency �� is

� xd

F/k0
�

��

=
1 + �

�
�29�

For small damping ratio this gives a relative motion of the damper
mass of order �−1. As it is desirable to limit the relative motion of
the damper the neutral value at �� should be a maximum. The
effect of the damping parameter �d on the relative motion is illus-
trated in Fig. 4 using the same parameters as in the previous
figure. It is seen that the parameter value �classic leads to larger
values of the relative motion at frequencies above and below ��.
The value �* leads to a curve with a narrow peak at the frequency
��. It is easily demonstrated that the value �opt corresponds ex-
actly to the transition between negative and positive curvature at
��, and therefore gives the flattest maximum at the neutral point.
Thus, the value �opt constitutes the best combination of flat behav-
ior of the dynamic amplification curve and limited relative motion
of the damper mass.

Fig. 4 Amplitude of relative damper motion �=0.05 and damp-
ing parameter: „---… �classic, „—… �opt, „-·-… �*
Fig. 5 Locus of modal frequencies, �=0.05 and �d /�0=0.94

Journal of Applied Mechanics
4 Complex Frequencies
The vibration properties of the tuned mass damper are charac-

terized by the natural frequencies of the free vibration modes,
determined as the complex roots of the normalized frequency
equation �11�. For a given mass ratio � the vibration properties
are determined by the frequency tuning in terms of the ratio
�d /�0 and the damping ratio �d. The effect of frequency tuning is
illustrated in Figs. 5–7 showing the locus of the complex natural
frequencies �1 and �2 in terms of the damping parameter �d for
the fixed mass ratio �=0.05. At zero damping the natural frequen-
cies �1 and �2 are located on the real axis, and as a matter of
notation the branches are determined by �1��2 for zero damp-
ing. When damping is introduced the roots move into the positive
imaginary half-plane. This is illustrated in the figures by marking
the points corresponding to �d=0,0.04,0.08, . . . with crosses. Fig-
ure 5 shows the case of frequency tuning by �d /�0=0.94. In this
case it is seen that the branch corresponding to �2 forms a local
curve ending at the frequency �� corresponding to locking of the
damper. In contrast the branch corresponding to �1 has non-local
character with an increasing imaginary part. Figure 6 shows the
case of frequency tuning by the slightly larger value �d /�0
=0.98. In this case the characteristics of the branches correspond-
ing to �1 and �2 are interchanged. Now the branch corresponding
to �1 is local, while the branch corresponding to �2 has non-local
character with increasing imaginary part.

4.1 The Frequency Bifurcation Point. For topological rea-
sons the transition between the two situations shown in Figs. 5
and 6 must involve intersection of the two branches at a bifurca-
tion point �*. This case is shown in Fig. 7 where the branches
corresponding to �1 and �2 meet at a bifurcation point �*. For

Fig. 6 Locus of modal frequencies, �=0.05 and �d /�0=0.98

Fig. 7 Locus of modal frequencies, �=0.05 and �d /�0= „1
−1
+�…
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higher values of the damping parameter �d the branches split into
a decreasing branch ending at �� and an increasing branch of
non-local character. For frequency tuning corresponding to exis-
tence of a bifurcation point the maximum modal damping is ob-
tained at the bifurcation point �*, and it is of interest to determine
the appropriate frequency tuning and the damping parameter �*
corresponding to the bifurcation point.

At moderate damping the full solution of the quartic frequency
equation �11� contains four roots, �1 and �2 located in the first
quadrant, and the symmetrically located roots −�̄1 and −�̄2 in the
second quadrant with the bar symbol denoting the complex con-
jugate. For sufficiently large damping the non-local pair of roots
may meet at a bifurcation point on the imaginary axis and con-
tinue as a pair of imaginary roots, however the main interest with
respect to damping properties is in the local branches. The case of
a local bifurcation frequency �* implies that the quartic frequency
can be expressed as

�� − �*�2�� + �̄*�2 = 0 �30�
This equation may be written in a form similar to Eq. �11�,

�4 − 4i Im��*��3 − �2��*�2 + 4 Im��*�2��2 + 4i Im��*���*�2�

+ ��*�4 = 0 �31�

The tuning condition, the bifurcation frequency �*, and the
corresponding damping ratio �* now follow from comparison of
coefficients of this equation and the original frequency equation
�11�. The magnitude of the bifurcation frequency ��*� follows di-
rectly from the ratio of the coefficients to the linear and cubic
terms, whereby

��*� =
�0

�1 + �
= �� �32�

Thus, the bifurcation frequency �* is located on a circle around
the center of the complex plane with radius ��. The frequency
tuning corresponding to the existence of a bifurcation point then
follows by comparison of the constant term in the two equations.
The result is �d=��

2 /�0, giving the value �22� already determined
by the condition of equal dynamic amplification at the neutral
frequencies.

The damping parameter �* at the bifurcation point is obtained
by comparison of the coefficient to the quadratic term in the two
equations

�0
2 + �1 + ���d

2 = 2��*�2 + 4 Im��*�2 = 2�0�d + ��*�0�2 �33�

where the term Im��*�2 has been eliminated by use of the coeffi-
cients to the linear and cubic terms. Substitution of the tuning
frequency �d from Eq. �22� then gives the damping parameter at
the bifurcation point

�*
2 =

�

1 + �
�34�

This value was used to illustrate the effect of the damping param-
eter on dynamic amplification and relative motion of the damper
mass in Figs. 3 and 4.

The modal damping is defined as the relative magnitude of the
imaginary part of the modal frequency

� j =
Im�� j�

�� j�
, j = 1,2 �35�

The common modal damping coefficient � at the bifurcation point
is then determined by the coefficient to the linear term in the
frequency equation �11�,

� =
�*

2

�0

��

=
��

2
, �d = �* �36�

As the mass ratio of a tuned mass damper is usually small, the

frequency of the system is not changed substantially by addition
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of the extra mass m and therefore ����0. At the bifurcation
point the modal damping is proportional to the square root of the
mass ratio, and it is seen that it corresponds to about half the
damping ratio �* in the tuned mass damper. This result will be
generalized in the following to damping ratios below the bifurca-
tion value.

4.2 Equal Modal Damping. At the particular damper fre-
quency tuning �22� the frequency equation can be written in the
symmetric normalized form

�4 − 2i�d
�1 + ����3 − �2 + ����

2 �2 + 2i�d
�1 + ���

3 � + ��
4 = 0

�37�

where �� defined in Eq. �12� serves as a convenient reference
frequency. It follows from this equation that the product of the
four roots is equal to ��

4 . This in connection with the location of
corresponding roots shown in Fig. 7 leads to the hypothesis that
for damping below the bifurcation value, �d��*, the roots in the
first quadrant are inverse points with respect to a circle centered at
origo with radius ��. This hypothesis is verified by the following
analysis.

If �1 and �2 are inverse points with respect to the circle with
radius �� they satisfy the relation

�1�̄2 = �̄1�2 = ��
2 �38�

Based on the hypothesis of the roots as inverse points the roots in
the first and second quadrant of the complex plane are � j, ��

2 / �̄ j,
−�̄ j and −��

2 /� j with j=1 or 2. This implies that the frequency
equation can be written as

�� − � j��� − ��
2 /�̄ j��� + �̄ j��� + ��

2 /� j� = 0 �39�

This equation can be reorganized into a symmetric format similar
to that of Eq. �37�

�4 − 2i
Im�� j�

�� j�
	 �� j�

��

+
��

�� j�

���3 − 	 �� j�2

��
2 +

��
2

�� j�2

+ 4
Im�� j�2

�� j�2

��

2 �2 + 2i
Im�� j�

�� j�
	 �� j�

��

+
��

�� j�

��

3 � + ��
4 = 0

�40�
In this form it is clearly seen that the coefficients depend on the
roots through two properties: the relative magnitude of the imagi-
nary part,

� =
Im�� j�

�� j�
, j = 1,2 �41�

and the combination of the magnitudes of the frequencies

r =
1

2
	 �� j�

��

+
��

�� j�

 =

��1� + ��2�
2��

�42�

The parameter � is the modal damping ratio, which by the as-
sumed inverse point property is identical for the two modes. The
parameter r is equal to the normalized arithmetic mean of the
normalized magnitude of the two modal frequencies. It follows
from its original definition in terms of �� j� that r�1. The param-
eter r assumes its largest value for the undamped modes at zero
damping, and decreases to the value r=1 at the bifurcation point.

In terms of the parameters � and r the frequency equation �40�
becomes

�4 − 4i�r���3 − �4r2 − 2 + 4�2���
2 �2 + 4i�r��

3 � + ��
4 = 0

�43�

This equation permits unique determination of the parameters �
and r by comparison of the coefficients with the frequency equa-
tion �37� and thereby confirms the inverse point hypothesis for
damping parameter values below the bifurcation value �*. The

coefficients to the first and second degree terms give
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2�r = �d
�1 + � �44a�

r2 + �2 = 1 + 1
4� �44b�

The first equation immediately gives a useful result for the modal
damping, when written in the form

� =
�1 + �

r

�d

2
, �d � �* �45�

In practice the mass ratio � is small and r is close to unity. Thus,
the modal damping ratio � is approximately half of the value of
the damping parameter �d, with an upper limit of �� /2 reached at
the bifurcation point.

Equation �44� is symmetric in the unknown variables r and �.
The distinction is made by observing that r�1 and 0���1. The
formulation takes a particularly simple form, when the damping
parameter �d is normalized with respect to its value �* at the
bifurcation point, given by Eq. �34�. When the first equation is
used to eliminate �2 from the second, the following quadratic
equation in r2 is obtained

r4 − �1 + 1
4��r2 + 1

4���d/�*�2 = 0 �46�

The modal damping ratio � satisfies the same equation. With
reference to the remark made about the magnitude of r and � the
solution is

r2

�2� = 1
2�1 + 1

4�� ± 1
2
��1 + 1

4��2 − ���d/�*�2 �47�

This solution is non-linear in the damping ratio �. However, in
practice the damping ratio will be much smaller than unity, and
thus a satisfactory approximation can be obtained by linearizing
the square root, whereby

r2 � 1 +
�

4
�1 − 	 �d

�*

2� , � �

��

2

�d

�*
�48�

These approximate relations contain the correct limits with r2 de-
creasing from 1+ 1

4� to 1, and � increasing from 0 to 1
2
��, when

the damping parameter �d increases from zero to the bifurcation
value �*=�� / �1+��. In fact, the relations �48� satisfy Eq. �44b�
identically, and the parameter in this approximation may therefore
be considered as a preliminary estimate of �d for which the correct
value is found by substitution of the representation �48� into
�44a�. The difference between the preliminary estimate and the
actual value of �d is negligible for the range of mass ratios used in
practice.

4.3 The Full Frequency Locus. For optimal frequency tun-
ing the full solution for the complex free vibration frequencies can
be found in explicit form by the following procedure. The quartic
frequency equation �37� is divided by �2��

2 and written in the
symmetric form

	 �

��

−
��

�

2

− 2i�d
�1 + �	 �

��

−
��

�

 − � = 0 �49�

It is seen that if � is replaced by ��
2 / �̄ the equation is merely

replaced by its conjugate. Thus, if � is a root, so is ��
2 / �̄. This

property has already been exploited for �d below the bifurcation
value �*, where the roots in the first and second quadrant form
pairs on a line from origo. For damping parameter values larger
than the bifurcation value �* this relation implies that the roots are
located on a circle with radius �� or as an inverse pair on the
imaginary axis. This behavior is illustrated in Fig. 8 and analyzed
in the following.
Equation �49� is a quadratic equation in the variable

Journal of Applied Mechanics
2iw =
�

��

−
��

�
�50�

with the solution

w =
��

2
� �d

�*
±�	 �d

�*

2

− 1� �51�

where the damping parameter �d has been normalized by the bi-
furcation value �* from Eq. �34�. The definition �50� of w in turn
leads to the following quadratic equation for the frequencies

	 �

��

2

− 2iw	 �

��

 − 1 = 0 �52�

The solution of this equation is

�

��

= iw ± �1 − w2 �53�

Expressions �51� and �53� with four independent choices of the
signs form a parametric representation of the locus of the four
complex free vibration frequencies in terms of the mass ratio �
and the damping parameter �d.

The locus of the complex frequencies is illustrated in Fig. 8 for
�=0.05. The roots depend on the magnitude of the damping pa-
rameter �d. For zero damping the roots lie on the real axis with the
positive values

�1,2

��

=�1 +
1

4
� ��1

4
� , �d = 0 �54�

As the damping ratio increases to �* the roots form curves meet-
ing at the bifurcation point

�*

��

=�1 −
1

4
� + i�1

4
� , �d = �* �55�

in the first quadrant and the symmetrically located bifurcation
point in the second quadrant. As �d increases beyond the bifurca-
tion value �* both values of the variable w become real and posi-
tive. For �w��1 expression �53� describes part of a circle with
radius ��. When the larger of the roots w reaches the value 1 the
corresponding frequency becomes imaginary, with value �= i��,
representing a non-local bifurcation point. This point is reached
for

2
�d

�*
=

��

2
+

2
��

�56�

The minimum value of �d=�* at the non-local bifurcation point is
reached for �=4. It is seen from Eq. �55� that this is also the limit
for positive imaginary part of the local bifurcation point. Thus, the
topology shown in Fig. 8 is limited to mass ratio less than four.

Fig. 8 Locus of modal frequencies, �=0.05 and �d /�0= „1
+�…

−1
However, this greatly exceeds the values of practical interest, typi-
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cally in the interval 0���0.1, and the figure is therefore repre-
sentative for typical application situations.

5 Conclusions
The design of tuned mass dampers involves the selection of

mass ratio, frequency tuning, and damping parameter. It is desir-
able to use a small mass ratio in order to introduce a minimum of
extra weight in the structure, and the problem then is to optimize
tuning frequency and damping parameter. For harmonic load it is
natural to consider the motion of the structural mass and the rela-
tive motion of the damper as function of frequency. The dynamic
amplification of the motion of the structural mass has two neutral
frequencies, at which the amplification does not depend on the
introduced damping. Similarly the relative motion of the damped
mass has a neutral frequency, where the motion is independent of
damping. Optimal frequency tuning can be identified by the clas-
sic procedure of requiring equal amplification of the motion of the
structural mass at the two neutral frequencies. A new criterion for
the optimal damping level has been proposed based on simulta-
neous conditions on the dynamic amplification of the motion of
the structural mass and the relative motion of the damper mass at
the frequency corresponding to free vibrations of the combined
mass with the damper locked. This criterion leads to an applied
optimal damping ratio that is 15% larger than the classic value,
and the analysis presented demonstrates that this results in a simi-
lar increase in the resulting modal damping of the system. Damp-
ing values smaller than this will lead to undesirable additional
relative motion of the damper mass at frequencies around that
corresponding to common motion of the total mass.

In many design situations the load may be transient or involve

a frequency spectrum. In those cases it is of particular interest to
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know the damping ratio of the modes. It has been demonstrated
that for the classic tuning of the damper frequency the complex
locus of the natural frequencies has a bifurcation point corre-
sponding to maximum damping of the modes. The corresponding
damping represents an upper limit for damping that can be use-
fully introduced into the system. When the imposed damping is
less than the limiting value it has been demonstrated that both
modes have identical damping ratio, and that this damping ratio is
approximately half of that used in the damper.
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On Scattering in a Piezoelectric
Medium by a Conducting Crack
The work is concerned with the characterization of a Kirchhoff diffraction field in a
piezoelectric material. An exact solution is obtained for the full scattering fields around
the tip of a semi-infinite crack, which is electrically conducting and is loaded with both
SH acoustic incident waves and in-plane electrical incident waves. First, it is found that
a conducting crack in a piezoelectric solid is not completely opaque to the electro-
acoustic wave, i.e., the electro-acoustic wave can penetrate and transmit to the other side
of the crack surface. Second, the analysis has confirmed that the interaction between
electrical wave and acoustic wave will provide multiple electrical and electro-acoustic
head waves. Third, by solving the problem, we have established a rigorous electro-
acoustic scattering theory in piezoelectric/ferroelectric media, which is different from the
scattering theory in purely elastic media. The characterization of the scattering fields in
piezoelectric media provides a unique signature database for electro-acoustic waves in
piezoelectric materials. �DOI: 10.1115/1.2047627�
1 Introduction
Wave scattering theory in piezoelectric/ferroelectric materials

has been an important research area for many years �e.g., �1��, and
it is the very foundation of sensor technology because piezo-
electric/ferroelectric ceramics and thin films are extensively used
in the design of various sensors, transducers, and actuators �e.g.,
�2–6� and many others�.

These devices are widely used in various micro-electro-
mechanical systems, which include acoustic devices, optical wave
devices and surface wave devices �SAW�, integrated circuits, and
random access memories. Nevertheless, traditional scattering
theory has been mainly focused on electric wave scattering with-
out considering electro-acoustic coupling effects. Recently, there
are interests in studies on scattering of electro-acoustic waves by
defects in piezoelectric/ferroelectric media, e.g., �7,8�.

In fact, electro-acoustic wave scattering phenomena in sensors
and thin films may be more important than purely electric wave
scattering, because it is not only pertinent to the performance of
the devices but also nondestructive evaluation of such devices
�e.g., �9��. Surprisingly, the scattering theory of electro-acoustic
waves in piezoelectric materials has rarely been studied, and it
remains an open research subject. A lesser-known reason attrib-
uted to the fact is that the initial boundary value problem of the
fully coupled Maxwell-Christoffel equations in piezoelectric ma-
terials are too complicated to solve, and the simplified wave equa-
tions under quasi-static approximation are not mathematically
well-posed �see �10,11��. This theoretical inadequacy has, at least
partly, attributed to the lack of understanding in electro-acoustic
wave scattering theory.

To regularize wave equations in piezoelectric media while still
retaining the simplicity of the quasi-static approximation, a few
regularization procedures have been proposed recently. We would
like to mention the contribution made by Li �12,13� and Daros
�14�. Recent developments intend to provide a theoretical ground
to establish a rigorous electro-acoustic wave scattering theory for

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS.
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California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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piezoelectric materials. The first systematic effort of establishing
an electro-acoustic scattering wave theory in piezoelectric materi-
als has been performed in �15�. However, the solution obtained in
�15� is limited by a special assumption that the electric potential in
front of the crack tip is zero, which may not be valid in general
cases. Moreover, the scattering fields due to an electric source
have not been discussed �15�.

The objective of this work is to establish a rigorous theory for
electro-acoustic wave scattering in piezoelectric materials. In this
work, we revisit the electro-acoustic wave scattering theory of
piezoelectric materials. In specific, we shall seek to characterize
the scattering fields generated by a conducting anti-plane crack
�mode III� in a piezoelectric material, which is subjected to both
plane SH incident acoustic waves and plane electrical incident
waves. Using the standard terminology in wave mechanics, we are
seeking the solution for a benchmark problem of wave mechanics
in a piezoelectric medium, i.e., Kirchhoff diffraction in a piezo-
electric medium. It should be noted that although the analysis of
electro-acoustic scatterings by a mode III crack may be simpler
than that of in-plane crack, it does provide the essential charac-
ters for the in-plane crack scattering phenomena as well.

The motivation for doing so is twofold: �1� the Kirchhoff dif-
fraction is often used to describe a �scalar� wave scattering field
due to a monochromatic line or point source in the presence of an
“opaque” �e.g., electrically conducting� screen. Despite skepticism
that the model lacks “physical ground,” the solution of a Kirch-
hoff field in a piezoelectric medium is an exact solution to the
coupled wave equations, which exactly obeys definite, though un-
usual, boundary conditions [16,17], and hence it will become an
essential part of the theoretical foundation for other scattering
problems from screens that have general impedance properties;
�2� For many sensors and transducers, electric loading is applied
by using thin electrode layers attached on a surface or embedded
in an interface of a piezoelectric block or between ferroelectric
thin films. Thus, discontinuous electrode layers are widely used in
various layered devices in order to fulfill the designed purposes.
Recently, interfacial fracture between embedded electrode layers
and ceramic layers has been identified as a major failure mode in
sensors (e.g., by Suo [18,19] and Ru [20]). For more background
information, readers may consult works by Ru et al. �21,20�, Win-
zer et al. �22�, Furuta and Uchino �23� Aburatani et al. �24�,
Freiman and White �25�, Hao et al. �26�, and Uchino �6�.

It may be more practical to find a scattering field by a perme-
able or an impermeable crack �e.g., �27–29��. Nonetheless, it is

the opinion of the authors that a sensible and an appropriate de-
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parture point for establishing a rigorous electro-acoustic wave
scattering theory in piezoelectric media is to first study the Kirch-
hoff diffraction of electro-acoustic waves.

The presentation of the paper is organized in six sections: The
initial boundary value problem of the scattering problem is set in
Sec. 2. In Sec. 3, the main procedure solution is discussed; Sec. 4
provides a full characterization of the scattering fields in front of
the crack tip, and in Sec. 5, the features of the scattering fields are
discussed in details. At last, a few concluding remarks are made in
Sec. 6.

2 The Scattering Problem

2.1 Formulation. Consider a transversely isotropic piezoelec-
tric space that contains a semi-infinite slit, which lies at y=0 and
x�0 with respect to a Cartesian coordinate system �x ,y ,z� shown
in Fig. 1. It is assumed that the interface slit is mechanically stress
free and short circuited and has a vanishingly small thickness.

For the diffraction problem considered in this paper, the rel-
evant electromechanical coupling on the transverse plane is be-
tween anti-plane displacement and in-plane electric field,

u = „0,0,w�x,y,t�… �1�

E = �−
��

�x
,−

��

�y
,0� . �2�

Following �12�, we introduce a pseudo-electric wave potential
function

� = � −
e15

�11
Cfw �3�

where Cfªc�
2 / �c�

2−ca
2�, e15 is the piezoelectric stress constant, and

�11 is the specific dielectric constant. c�ª ��11�0�−1/2 is the speed

of light and caª
�c̄44/� is the acoustic speed, where c̄44ªc44

E

+e15
2 /�11, �0 is the magnetic permeability constant in vacuum, and

c44
E is the purely elastic shear modulus in the transverse direction.

Based on the “quasi-hyperbolic approximation” introduced by
Li �15�, we can then derive a set of decoupled wave equations,

� �2

�x2 +
�2

�y2 −
1

ca
2

�2

�t2�w = 0 �4�

� �2

�x2 +
�2

�y2 −
1

c�
2

�2

�t2�� = 0. �5�

Under the quasi-hyperbolic approximation, the relevant consti-

Fig. 1 Schematic illustration of a system of plane waves due
to an incident acoustic wave approaching a semi-infinite crack
tutive equations are
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�xz = c̃44
�w

�x
+ e15

��

�x
�6�

�yz = c̃44
�w

�y
+ e15

��

�y
�7�

Dx = e15�1 − Cf�
�w

�x
− �11

��

�x
. �8�

Dy = e15�1 − Cf�
�w

�y
− �11

��

�y
�9�

where c̃44ª c̄44�1− �1−Cf��e15
2 / c̄44�11��.

2.2 The Scattering Problem. For time t�0, an incident SH
acoustic plane wave or an incident pseudo-electric wave propa-
gates from afar toward the semi-infinite slit. The incident plane
waves are assumed to have the following form:

w�i��x,y,t� = w0
�i�G„t − sa�cos�	a�x − sin�	a�y�… �10�

��i��x,y,t� = �0
�i�G„t − s��cos�	��x − sin�	��y�… �11�

where the subscripts “a” and “�” correspond to the acoustic and
pseudo-electric waves. w0

�i� and �0
�i� are the respective plane wave

amplitudes and saª1/ca and s�ª1/c� are the respective slow-
nesses. 0
	a ,	�
� /2 are angles of incident waves. The shape
function G�·� is a real-valued function defined to be

G�t� ª H�t��
0

t

g���d� �12�

where g�·� is a given real value function, and H�t� is the Heaviside
function. For simplicity, it is assumed that both the incident acous-
tic and pseudo-electric waves have the same shape functions. In
the case that they are different, superposition can be used to obtain
the solution due to linearity of the problem.

Although the material properties in the upper and lower half
spaces are identical, it may be more convenient to treat them
separately for the time being. The field variables in the upper half
space �y
0� and in the lower half space �y0� are labeled by the
superscripts u and l, respectively. At time t=0, the incident plane
wave arrives at the crack tip and is being scattered. The total
solutions of the scattering problem are

w�x,y,t� = w�i��x,y,t� + w�s��x,y,t� , �13�

��x,y,t� = ��i��x,y,t� + ��s��x,y,t� . �14�

The superscript “�i�” indicates the incident field and “�s�” indi-
cates the scattering field.

For a conducting crack, the crack surface is traction-free and
electrically grounded,

�yz
u �x,0,t� = �yz

l �x,0,t� = 0, x � 0 �15�

�u�x,0,t� = �l�x,0,t� = 0, x � 0 �16�

and ahead of the crack tip both mechanical and electrical displace-
ments are continuous,

wu�x,0,t� = wl�x,0,t�, x � 0 �17�

Dy
u�x,0,t� = Dy

l �x,0,t�, x � 0. �18�
Consideration of Eqs. �13�–�18� leads to the following set of

boundary conditions for the scattered waves:

�yz
u�s��x,0,t� = �yz

l�s��x,0,t� = − �yz
�i��x,0,t�, x � 0 �19�

�u�s��x,0,t� = �l�s��x,0,t� = − ��i��x,0,t�, − x  0 �20�

u�s� l�s�
w �x,0,t� = w �x,0,t�, x � 0 �21�
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Dy
u�x,0,t� = Dy

l �x,0,t�, x � 0. �22�
For scattering fields, the following initial conditions and radia-

tion conditions are imposed as

w�s��x,y,t� = w�s�˙ �x,y,t� = 0, t � 0 �23�

��s��x,y,t� = ��s�˙ �x,y,t� = 0, t � 0 �24�

and

lim
r→�

�w�s�,��s�,w�s�˙ ,��s�˙ � = 0, t  0 �25�

Since the incident and total displacement fields and pseudo-
electric potential obey the wave equations �4� and �5�, by virtue of
�13� and �14�, the scattered displacement field w�s� and the scat-
tered pseudo-electric potential ��s� must also obey the same equa-
tions. For simplicity, the superscript “�s�” denoting the scattering
fields is dropped in the rest of the paper if no confusion may
occur.

3 Solution Procedures

3.1 Transform Methods. In this section, the standard proce-
dure of multiple Laplace transforms is employed to seek the so-
lution of the above mixed initial boundary value problem. The
multiple transforms are introduced for the variable pair �x , t�. To
suppress the time variable t, the usual, one-sided Laplace trans-
form is applied:

f*�x,y,p� =�
0

�

f�x,y,t�exp�− pt�dt , �26�

f�x,y,t� =
1

2�i�
Br1

f*�x,y,p�exp�pt�dp , �27�

where the inversion integration is taken over the usual Bromwich
path.

To suppress the spatial variable x, the two-sided Laplace trans-
form is used:

f̂*��,y,p� =�
−�

�

f*�x,y,p�exp�− p�x�dx �28�

f*�x,y,p� =
p

2�i�
Br2

f̂*��,y,p�exp�p�x�d� �29�

After transformation, the governing equations �4� and �5� for
the scattered waves become

� d2

dy2 − p2�2����ŵ*��,y,p� = 0 �30�

� d2

dy2 − p2�2��2���̂*��,y,p� = 0 �31�

where ����ª�sa
2−�2 and ����ª�s�

2−�2.
To satisfy the boundary conditions at infinity, we choose the

solution of the following form:

	ŵl���,y,p� =
1

p2Al���exp�− p�y�

�̂l���,y,p� =
1
2Bl���exp�− p�y� 
y  0, �32�
p
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	ŵu���,y,p� = −
1

p2Au���exp�p�y�

�̂u���,y,p� = −
1

p2Bu���exp�p�y� 
y � 0. �33�

In Eqs. �32� and �33�, Re(���� ,����)�0 in the plane with
branch cuts:

�: Im��� = 0, Re��� � − sa, and Re���  sa, �34�

�: Im��� = 0, Re��� � − s�, and Re���  s�. �35�

3.2 The Wiener-Hopf Decomposition. A powerful technique
to find the solution in transformed space is the Wiener-Hopf de-
composition. To apply the Wiener-Hopf technique, it is expedient
to expand the mechanical and electrical boundary conditions over
the full range of the x axis. This can be done by introducing two
unknown functions:

�−�x,t� ª ��yz
l �x,0,t� = �yz

u �x,0,t� x � 0,

0 x � 0,
� �36�

�−�x,t� ª ��l�x,0,t� = �u�x,0,t� x � 0,

0 x � 0,
� �37�

�w+�x,t� ª �0 x � 0,

wl�x,0,t� − wu�x,0,t� x � 0,
� �38�

�D+�x,t� ª �0 x � 0,

Dy
l �x,0,t� − Dy

u�x,0,t� x � 0.
� �39�

so that

�yz
l �x,0,t� = �yz

u �x,0,t� = �−�x,t� − �yz
�i��x,0,t�, − � � x � �

�40�

�l�x,0,t� = �u�x,0,t� = �−�x,t� − ��i��x,0,t�, − � � x � �

�41�

wl�x,0,t� − wu�x,0,t� = 0 + �w+�x,t�, − � � x � � �42�

Dy
l �x,0,t� − Dy

u�x,0,t� = 0 + �D+�x,t�, − � � x � � . �43�

After suppressing both x and t,

�̂yz
l���,0,p� = �̂yz

u���,0,p� =
�−���

p
− �̂yz

��i���,0,p� �44�

�̂l���,0,p� = �̂u���,0,p� =
�−���

p2 − �̂��i���,0,p� �45�

ŵl���,0,p� − ŵu���,0,p�
2

=
�U+���

p2 �46�

D̂y
l���,0,p� − D̂y

u���,0,p�
2

=
�D+���

p
�47�

where

�−��� ª p�
−�

0

�−
*�x,p�exp�− p�x�dx �48�

�−��� ª p2�
−�

0

�−
*�x,p�exp�− p�x�dx �49�

�U+��� ª p2��
�w+

*�x,p�
2

exp�− p�x�dx �50�

0
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�D+��� ª p�
0

�
�D+

*�x,p�
2

exp�− p�x�dx �51�

On the other hand, employing the constitutive equations �6�–�9�
and substituting the general solutions and �32� and �33� into Eqs.
�48�–�51�, one may obtain the following sets of equations:

�̂yz
l� + �̂yz

u� ⇒ − ĉ44����Asy��� − e15����Bsy��� = �−��� − p�̂yz
��i�

�52�

�̂l� − �̂u� ⇒
e15

�11
CfAsy��� + Bsy��� = 0 �53�

ŵl� − ŵu� ⇒ Asy = �U+��� �54�

�̂l� + �̂u� ⇒
e15

�11
CfAan��� + Ban��� = �−��� − p2�̂��i� �55�

�̂yz
l� − �̂yz

u� ⇒ − c̃44����Aan��� − e15����Ban��� = 0 �56�

D̂y
l� − D̂y

u� ⇒ − e15�1 − Cf�����Aan��� + �11�Ban��� = �D+���
�57�

where Asy���= �Al���+Au���� /2, Aan���= �Al���−Au���� /2, Bsy���
= �Bl���+Bu���� /2, and Ban���= �Bl���−Bu���� /2. Now, from these
equations, it becomes obvious that two decoupled Wiener-Hopf
equations can be obtained:

− BG����U+��� = �−��� − p�̂yz
��i���,0,p� �58�

BG����D+���
���������e15

2 �1 − Cf� + �11c̃44�
= �−��� − p2�̂��i���,0,p� �59�

where

BG��� = c̃44„���� − k̃e
2����… �60�

is recognized as the Bleustein-Gulyaev wave function �30,31�, and

ke
2 is the electro-mechanical coupling coefficient:

k̃e
2
ª

e15
2

�11c̃44

Cf . �61�

The terms �̂yz
��i��� ,0 , p� and �̂��i��� ,0 , p� in Eqs. �58� and �59�

are dependent on the type of incident waves. Employing the inci-
dent acoustic wave field and pseudo-electric wave field in Eqs.
�10� and �11� and the constitutive equations for stress and electric
potential in �7� and �9�, one may obtain the stress and electric
potential for an incident wave:

�̂yz
��i���,0,p� = −

�0g*�p�
p�� + sh�

�62�

�̂��i���,0,p� = −
�0g*�p�

p2�� + sh�
�63�

where

�0 = − c̄44sa sin�	a�w0
�i� �64�

�0 = −
e15

�11
Cfw0

�i� �65�

sh = sa cos�	a� �66�

for an incident acoustic wave w�i�, whereas for an incident pseudo-
electric wave ��i�,

�0 = − e15s� sin�	���0
�i� �67�

�0 = − ��i� �68�
0
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sh = s� cos�	�� . �69�
For convenience, define the Bleustein-Gulyaev wave velocity

and slowness:

cbg ª ca
�C̃f�1 − ke

4� and sbg ª 1/cbg, �70�

where

C̃f ª
c�

2

c�
2 − k̃e

4ca
2

. �71�

The detailed solutions to the two Wiener-Hopf equations �58� and
�59� are presented in the Appendix, and the main results are

Asy��� = −
�0g*�p��sa + �R−�− sh�
�� + sh��sbg + ��DsT+���

, �72�

Bsy��� =
e15Cf�0g*�p��sa + �R−�− sh�
�11�� + sh��sbg + ��DsT+���

, �73�

Aan��� = −
�0g*�p��sa + ��s� + �S−�− sh�e15

�sa − ��sbg + ��T+���Ds

, �74�

Ban��� =
�0g*�p��sa + ��S−�− sh�c̃44

�s� − ��sbg + ��T+���Ds

, �75�

where R−��� and T+��� are sectionally analytic functions given in
the Appendix.

To this end, from Eqs. �72�–�75�, the coefficients of Al���, Bl���,
Au���, and Bu��� can be found:

Al��� = Asy��� + Aan���

= − ��0 +
e15

�s� + ��sa + sh
�s� + sh

�sa − �
�0�K��� , �76�

Bl��� = Bsy��� + Ban���

= � e15

�11
Cf�0 +

c̃44
�sa + ��sa + sh

�s� + sh

�s� − �
�0�K��� , �77�

Au��� = Asy��� − Aan���

= − ��0 −
e15

�s� + ��sa + sh
�s� + sh

�sa − �
�0�K��� , �78�

Bu��� = Bsy��� − Ban���

= � e15

�11
Cf�0 −

c̃44
�sa + ��sa + sh

�s� − sh

�s� − �
�0�K��� ,

�79�

where

K��� ª � g*�p��sbg − ���sa + shT−���

�� + sh��sa − ��sbg + sh�T−�− sh�BG���
� . �80�

Substituting Eqs. �76�–�79� into Eqs. �32� and �33� and per-
forming an inverse transform, one obtains the scattered displace-
ment and pseudo-electric wave fields:

w*�x,y,p� = −
1

2�ip�
��−i�

��+i� ���0

+ sgn�y�
e15

�s� + ��sa + sh
�s� + sh

�sa − �
�0� · K����
�exp�− p„����sgn�y�y − �x…�d� , �81�
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�*�x,y,p� =
1

2�ip�
��−i�

��+i� � e15

�11
Cf�0

+ sgn�y�
c̃44

�sa + ��sa + sh
�s� + sh

�s� − �
�0� · K����

�exp�− p„����sgn�y�y − �x…�d� . �82�

4 Scattering Fields

4.1 Cagniard-deHoop Inversion. Having carried out the
Wiener-Hopf decomposition, we are now in a position to invert
the integrals in Eqs. �81� and �82� to obtain explicit solutions in
the physical domain. The exact inversion can be achieved by the
Cagniard-de Hoop scheme �32,33�. First, the scattered displace-
ment and the pseudo-electric potential fields for an incident acous-
tic wave are considered so that sh=sa cos�	a� in the integrals. We
proceed by replacing the original Bromwich path by a deformed
Cagniard contour such that the one-sided Laplace transform can
be obtained by inspection. In the following, the inversion proce-
dure is presented only for y0; the inversion procedure for y
�0 is identical and is omitted.

Shown in Fig. 2, the following inversion paths are chosen: ��,
���, and ��, in which

����y − �x = t, � � ��,���

�83�
����y − �x = t, � � � .

Fig. 2 The Cagniard-deHoop inversion paths ��, ��, and ���

for acoustic excitation
�

·H�t − s

Journal of Applied Mechanics
Let x=r cos 	 and y=r sin 	. One then has

��± =
1

r
�− t cos 	 ± i sin 	�t2 − sa

2r2�, sar 
 t � � �84�

���± =
1

r
�− t cos 	 ± sin 	�sa

2r2 − t2� ± i�, t�0 
 t � sar

�85�

��± =
1

r
�− t cos 	 ± i sin 	�t2 − s�

2r2�, s�r 
 t 
 � �86�

where t�0=�sa
2−s�

2y+s�x.
It should be noted that at �=−sa cos 	, the path �� intercepts

the real axis Re���. Thus, a supplement path ��� is needed to

circumvent the branch cut of multivalued function ����=�s�
2−�2.

This leads to the occurrence of the electroacoustic head wave �see
discussions in �13� as well as �15��. Along path ���, the parameter
	 varies in the range

0 � 	 � 	cr
a� �87�

where 	cr
a�
ª �cos−1�s� /sa��.

Following de Hoop �33�, one may show that

���±

�t
=

±i����±�
�t2 − sa

2r2
; ����±� =

sin 	

r
t ± i

cos 	

r
�t2 − sa

2r2; �88�

����±

�t
=

������±�
�sa

2r2 − t2
; �����±� =

sin 	

r
t ±

cos 	

r
�sa

2r2 − t2;

�89�

���±

�t
=

±i����±�
�t2 − s�

2r2
; ����±� =

sin 	

r
t ± i

cos 	

r
�t2 − s�

2r2; �90�

and subsequently exact inversions are found:

w�s��x,y,t� =�
0

t

G�t − ��w�
�s��x,y,��d� + wr

�s��x,y,t�

�91�

��s��x,y,t� =�
0

t

G�t − ����
�s��x,y,��d� + �r

�s��x,y,t�

where the subscript “�” represents the scattering fields due to the
impulsive incident wave, and wr

�s�, �r
�s� are reflected/refracted dis-

placement and pseudo-electric fields.
w�
�s��x,y,t� = −

1

��R��0 + sgn�y�
e15

�s� + ��+
�sa + sh

�s� + sh

�sa − ��+

�0� · � �sbg − ��+��sa + shT−���+�

���+ + sh��sa − ��+�sbg + sh�T−�− sh�BG���+�
� ����+�

�t2 − sa
2r2�

· H�t − sar� − J��0 + sgn�y�
e15

�s� + ���+
�sa + sh

�s� + sh

�sa − ���+

�0� · � �sbg − ���+��sa + shT−����+�

����+ + sh��sa − ���+�sbg + sh�T−�− sh�BG����+�
�

�
�����+�

�t2 − sa
2r2� · �H�t − t�0� − H�t − sar��� , �92�

��
�s��x,y,t� =

1

�
� e15

�11
Cf�0 + sgn�y�

c̃44
�sa + ��+

�sa + sh
�s� + sh

�s� − ��+

�0�� �sbg − ��+��sa + shT−���+�

���+ + sh��sa − ��+�sbg + sh�T−�− sh�BG���+�
� ����+�

�t2 − s�
2r2�

�93�

�r� .
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4.2 Scattering Fields in Front of the Crack Tip. Scattering fields due to different incident waves in front of the crack tip are
discussed as follows:

4.2.1 Incident Acoustic Plane Wave. In diffraction theory, both the acoustic and the electromagnetic, the simple pole that represents
the incident source determines the geometrical reflection/refraction patterns. These geometrical scattering patterns induced by acoustic
excitation depend on the incident angle of the acoustic wave, because the position of simple pole relies on the angle of incident acoustic
wave. Figure 2 shows that there are two different positions of the simple pole, �=−sh=−sa cos�	a�, and the positions of −sh in the �
plane will directly affect the outcome of the reflection and refraction fields. There are basically two cases:

�1� sa cos�	a�s�

In this case, the pole always lies to the right of �� but to the left of �� and ���. This means that there are pole contributions to the
paths ��, but no contributions to the paths ��. After evaluating the residues of the poles for the corresponding integral in �81� and �82�,
we have

wr
�s��x,y,t� =	

R� sa sin�	a� + k̃e
2�s�

2 − �sa cos�	a��2

sa sin�	a� − k̃e
2�s�

2 − �sa cos�	a��2
�·wo

�i�G�t − sa�cos�	a�x + sin�	a�y��

− J� sa sin�	a� + k̃e
2�s�

2 − �sa cos�	a��2

sa sin�	a� − k̃e
2�s�

2 − �sa cos�	a��2
�·wo

�i�H�G„t − sa�cos�	a�x + sin�	a�y�…� , 0 
 	 � 	a;

0, 	a 
 	 � �;

0, � 
 	 � 2� − 	a;

− wo
�i�G�t − sa�cos�	a�x − sin�	a�y�� , 2� − 	a 
 	 � 2� ,


 �94�

�r
�s��x,y,t� = �0, 0 
 	 � �;

0, � 
 	 � 2�;
� �95�

where the Hilbert transform H�·� is defined as

H�f�t�� =
1

�
PV�

−�

�
f���
� − t

d� , �96�

where PV denotes the Cauchy principal value.
The complete scattering pattern is shown in Fig. 3. Note that the refracted acoustic wave �dashed line in the figure� completely

cancels the incident acoustic wave.
�2� s��sa cos�	a�
In this case, the pole lies to the right of all the paths, and, therefore, after evaluating the residues of the poles for all the corresponding

integrals, we have

wr
�s��x,y,t� =	�

sa sin�	a� + k̃e
2s� sin�	��

sa sin�	a� − k̃e
2s� sin�	��

�·wo
�i�G„t − sa�cos�	a�x + sin�	a�y�… , 0 
 	 � 	a;

0, 	a 
 	 � �;

0, � 
 	 � 2� − 	a;

− w�i�G„t − sa�cos�	a�x − sin�	a�y�… , 2� − 	a 
 	 � 2� ,


 �97�

Fig. 3 The scattering patterns excited by an acoustic source: case „1…
o
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�r
�s��x,y,t� =	�

− 2e15Cfsa sin�	a�

�11�sa sin�	a� − k̃e
2s� sin�	���

�·wo
�i�G�t − �sa cos�	a�x + s� sin�	��y�� , 0 
 	 � 	�;

0, 	� 
 	 � �;

0, � 
 	 � 2� − 	�;

0, 2� − 	� 
 	 � 2� .

 �98�

The complete scattering pattern is shown in Fig. 4. Again, the refracted acoustic wave �dashed line in the figure� completely cancels
the incident acoustic wave.

In both cases, one can observe that a refracted acoustic wave is passing through the slit, which will not happen in purely elastic
media.

4.2.2 Incident Electric Plane Wave. As shown in Fig. 5, the simple pole �=−sh=−s� cos�	�� always lies to the right of all the
integration paths, and thus the residue of the pole due to the corresponding integral needs to be evaluated. Therefore, the reflection and
refraction fields due to an incident pseudo-electric source are

wr
�s��x,y,t� =	�

2e15s� sin�	��

c̃44„sa sin�	a� − k̃e
2s� sin�	��…

� ·�o
�i�G�t − �s� cos�	��x + sa sin�	a�y�� , 0 
 	 � 	a;

0, 	a 
 	 � �;

0, � 
 	 � 2� − 	a;

0, 2� − 	a 
 	 � 2� ,

 �99�

�r
�s��x,y,t� =	− � sa sin�	a� + k̃e

2s� sin�	��

sa sin�	a� − k̃e
2s� sin�	��

� ·�o
�i�G�t − s��cos�	��x + sin�	��y�� , 0 
 	 � 	�;

0, 	� 
 	 � �;

0, � 
 	 � 2� − 	�;

− �o
�i�G�t − s��cos�	��x − sin�	��y�� , 2� − 	� 
 	 � 2� .


 �100�
The complete scattering pattern is shown in Fig. 6. Note that
the refracted electric wave �dashed line in the figure� completely
cancels the incident electric wave.

5 Discussions

5.1 Displacement Time History. With the analytical expres-
sions of the diffracted waves, the displacement time history at a
fixed point can be traced and calculated during the electroacoustic
scattering so that we may be able to compare them with the mea-
surements obtained in the nondestructive testing. Figures 7 and 8
show the displacement time histories at various 	 with fixed y in

Fig. 4 The scattering patterns excited by an acoustic source:

case „2…

Journal of Applied Mechanics
the upper half space due to an impulsive incident acoustic source
and an electric source, respectively, with Fig. 7 corresponding to
acoustic source case �1� in the previous section. Recall that 	 is
measured clockwise beginning from the x axis, so that with y
fixed, 	=−90 deg in both figures is closest to the crack tip while
	=−10 deg is the farthest. A distinctive feature of scattering by a
conducting crack is the ability of the head wave to tunnel through
the crack, a phenomenon which is not observed in the purely
elastic case in �34�. Note that in Figs. 7 and 8 the head wave
arrives at almost identical times at each 	 in both figures. Since
the speed of light is much larger than the acoustic wave speed, the
head wave wavefront is almost parallel to the crack. �Imagine the

Fig. 5 The Cagniard-deHoop inversion paths for pseudo-

electric excitation

NOVEMBER 2005, Vol. 72 / 949



arc next to “V” in Figs. 3–6 is much larger. Then the electroa-
coustic head wave line connecting the arc would be more parallel
to the crack.�. This electromagnetic acoustic head wave has also
been observed in experiments, e.g., �35�. Another distinctive fea-
ture of the scattering field is the cancellation of the refracted
acoustic wave by the incident acoustic wave as seen in equations
�95� and �98� and, thus, no diffracted acoustic wave or incident
acoustic wave exists in the displacement time histories for �	�
� �	a�. Also, the scattered acoustic wave originating from the
crack tip can be observed in both time histories as decreasing in
magnitude as the observation point is moving farther away from
the crack tip.

5.2 Mode Conversion and Reflection/Refraction Coeffici-
ents. As shown above, in a piezoelectric medium an acoustic in-
cident wave can trigger both acoustic and electric scattering fields,
and vice versa an electric incident wave can generate both acous-

Fig. 6 The scattering patterns excited by an electric source

Fig. 8 Displacement time histories at
sive electric source incident at ��=45°

and s=scattered wave.
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tic and electric scattering fields as well. It would be interesting to
examine the possible mode conversion between these geometrical
reflection/refraction waves. To do so, similar convention used by
Aki and Richards �36� for purely elastic wave reflection conver-
sion is adopted here. The ratios of all possible mode conversions
are defined and calculated as follows,

ÁÁ ª

wr
�s�

w�i� = − 1, � 
 	 � 2� �101�

ÁÉ ª

�r
�s�

w�i� = 0, � 
 	 � 2� �102�

ÉÁ ª

wr
�s�

��i� = 0, � 
 	 � 2� �103�

Fig. 7 Displacement-time histories at various � with fixed y
due to an impulsive acoustic source incident at �a=45°. Labels:
i=incident wave, h=head wave, and s=scattered wave.

rious � with fixed y due to an impul-
bels: i=incident wave, h=head wave,
va
. La
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ÉÉ ª

�r
�s�

��i� = − 1, � 
 	 � 2� �104�

ÁÀ ª

�r
�s�

w�i� =
sa sin�	a� + k̃e

2s� sin�	��

sa sin�	a� − k̃e
2s� sin�	��

, 0 
 	 � � �105�

ÁÈ ª

�r
�s�

w�i� =
− 2e15Cfsa sin�	a�

�11„sa sin�	a� − k̃e
2s� sin�	��…

, 0 
 	 � �

�106�

ÉÀ ª

wr
�s�

��i� =
2e15s� sin�	��

c̃44�sa sin�	a� − k̃e
2s� sin�	���

, 0 
 	 � �

�107�

ÉÈ ª

�r
�s�

��i� = −
sa sin�	a� + k̃e

2s� sin�	��

sa sin�	a� − k̃e
2s� sin�	��

, 0 
 	 � � �108�

5.3 Dynamic Intensity Factors. At the tip of the screen or
the crack, scattering fields will become singular, which is of great
importance for material strength. In what follows, the intensity
factors of the singular fields generated by the antisymmetry solu-
tions are calculated. Define

K��t� ª lim
x→0−

�2��x��yz
�s��x,0,t� , �109�

KD�t� ª lim
x→0−

�2��x�Dy
�s��x,0,t� , �110�

KE�t� ª lim
x→0−

�2��x�Ey
�s��x,0,t� . �111�

Considering the asymptotic relations �37�,

lim
x→0−

���x��1/2�yz
* �x,0,p� = lim

�→−�
�p��1/2�−��,p�

p
�112�

lim
x→0−

���x��1/2Dy
*�x,0,p� = lim

�→−�
�p��1/2D̂y

*��,p� �113�

lim
x→0−

���x��1/2Ey
*�x,0,p� = lim

�→−�
�p��1/2Êy

*��,p� , �114�

one can derive that

K�
*�p� = �2

�0
�sa + sh

T−�− sh��sbg + sh��− g*�p�
�p

� �115�

After performing inverse Laplace transform, one may obtain

K��t� = −
�0

�sa + sh

T−�− sh��sbg + sh�
��t� �116�

where

��t� ª� 2

�
�

+0

t
1
��

g�t − ��d� �117�

Similarly, based on the definition

D̂y
*��,p� = �− e15�1 − Cf�����A��� + �11����B����/p , �118�

Êy
*��,p� = �����A��� +

e15

�11
Cf����B����/p , �119�
one can then show that
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KD�t� = − �e15�0��t� + �e15
2 �1 − Cf�

+ c̃44�11��sa + sh
�s� + sh�0H���t���

·
�sa + sh

c̃44�1 − k̃e
2�T−�− sh��sbg + sh�

, �120�

KE�t� = − �1 +
e15

2

�11
2 Cf

2��0��t� + �e15 +
e15

�11
Cfc̃44�

��sa + sh
�s� + sh�0H���t���

·
�sa + sh

c̃44�1 − k̃c
2�T−�− sh��sbg + sh�

. �121�

Define the following stress, electric displacement, and electric
field phase functions in the Laplace transform domain as

G��sh� ª
K�

*�p�
�*�p�

= −
�0

�sa + sh

T−�− sh��sbg + sh�
�122�

GD�sh� ª
KD

* �p�
�*�p�

= − �e15�0 + i sgn�p��e15
2 �1 − Cf� + c̃44�11�

· �sa + sh
�s� + sh�0�

�sa + sh

c̃44�1 − k̃e
2�T−�− sh��sbg + sh�

�123�

GE�sh� ª
KE

*�p�
�*�p�

= − �1 +
e15

2

�11
2 Cf

2��0 + i sgn�p��e15 +
e15

�11
Cfc̃44�

· �sa + sh
�s� + sh�0� �sa + sh

c̃44�1 − k̃e
2�T−�− sh��sbg + sh�

�124�

Apparently, the electric displacement and electric field are func-
tions of the frequency of the incident shape function.

Figures 9–11 display the phase functions G�, GD, and GE,
which are normalized by the incident acoustic wave amplitude w0
or the incident electric wave amplitude �0 at its respective inci-
dent angle for a broad range of electromechanical coupling coef-

ficients �k̃e�. In general, the amplitude of the normalized phase
function increases with increasing electromechanical coupling co-
efficient. Examining the normalized stress phase functions G� in
Figs. 9�a� and 9�b�, the amplitude increases with the increase of
incident angle, because more work is done on the crack tip by
incident waves at large angles. Also, the amplitude of the normal-
ized stress phase function due to an incident acoustic source is
much larger than that due to an electric source. The amplitude of
the electric displacement and electric field phase functions GD and
GE due to an incident acoustic wave and an incident electric wave
are plotted in Figs. 10 and 11, respectively. In general, the ampli-
tudes of both functions decrease with the increase of incident
angles. There are two competing effects here: as incident angle
increases, the incident wave is more focused on opening the
crack; on the other hand, when the horizontal slowness of the
wave decreases, the wave has less time to do work on the crack.
The former effect is much more significant in mechanical stress
analysis, but the latter effect is more pronounced for the electric
displacement and electric field. The most striking fact is that the
amplitudes for both phase functions are significantly larger for an
incident acoustic source than for that of an electric source, and
thus the large electromechanical coupling plays an important role
in the increase of electric displacement and electric field intensi-

ties.
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ers
6 Conclusions
In this work, a complete solution of a Kirchhoff diffraction

problem in a piezoelectric medium is obtained. It is not possible to
obtain such solution by employing the quasi-static approximation
that has been used traditionally in the design of ferroelectric sen-
sors. Under the quasi-static approximation, the initial boundary
value problem becomes ill-posed, because the corresponding
wave equations are not hyperbolic anymore.

As shown in �15�, the characteristics of the scattering patterns
in piezoelectric media have major differences from that in elastic
media. For instance, considering the scattering field generated by
an SH acoustic incident wave, there is no “shadow zone” behind
the half-plane slit in a piezoelectric media, which is in contrast
with the similar case in a purely elastic media �38�. In other
words, the crack is somewhat “transparent” to incident waves.
This is because in a piezoelectric medium the incident acoustic/
electric wave interacts with the crack to produce the electro-
acoustic head wave that can penetrate the crack surface as shown
in Figs. 3, 4, and 6.

Fig. 9 Amplitude of the normalized stress phase function for
incident angle for an incident acoustic source G� /w0 and „b… v

Fig. 10 Amplitude of the normalized electric displacement ph
˜

„ke… „a… versus an incident acoustic source GD /w0 and „b… versus
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Another interesting feature of the scattering fields is that the
different head waves exist in many different scenarios, which is a
much richer physical phenomenon than the scattering field in a
purely elastic medium.

Moreover, it may be observed that the critical angle 	cr
a� dictates

the reflection pattern. For example, when the incident acoustic
angle is smaller than the critical angle, there will be no reflected
electric wave as shown in Fig. 3.

To the best of the authors’ knowledge, up to this date, there is
no systematic experimental study on the Kirchhoff diffraction in
piezoelectric/ferroelectric materials. We have not found any ex-
perimental data of the Kirchhoff diffraction in piezoelectric mate-
rials in open literature. Nevertheless, some of the scattered wave
modes and head wave modes predicted in this paper are in good
agreement with the experimental data obtained from an experi-
ment of the transient surface excitation of a piezoelectric material
�see �35,39��, which cannot be predicted by the commonly used
quasi-static approximation theory at all.

rious electro-mechanical coupling coefficients „k̃e… „a… versus
us incident angle for an incident electric source G� /�0

function for various electro-mechanical coupling coefficients
va
ase

an incident electric source GD /�0
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Appendix: Solution of the Wiener-Hopf Equations
The key to solving the two Wiener-Hopf equations �58� and

�59� is how to factorize the Bleustein-Gulyaev function BG���
into sectionally analytic functions in the left and right half
complex-� planes, respectively. This has been done by Li and
Mataga �40� and by Li �13�,

BG��� =
�sbg + ���sbg − ��
��sa + ���sa − ��

T+���T−���Ds �A1�

where

Ds ª c̄44�1 − k̃e
2� , �A2�

and

T±��� ª exp−
1

�
�

s�

sa

arctan�− k̃e
2�̄���

����
� d�

� ± �� , �A3�

where �̄���ª��2−s�
2.

We first proceed to solve the stress-displacement Wiener-Hopf
equation �44�. Substituting Eq. �A1� into the Wiener-Hopf equa-
tion �58� yields

− Ds

sbg + �

�sa + �
�U+���T+��� = �−���R−��� +

�0g*�p�R−���
� + sh

�A4�
where

R−��� ª
�sa − �

�sbg − ��T−���
�A5�

In order to separate the second term on the right side of Eq.
�A4� into two sectionally analytic functions, additive factorization

Fig. 11 Amplitude of the normalized electric field phase func
versus an incident acoustic source GE /w0 and „b… versus an in
is performed. By inspection, a possible additive decomposition is
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R−���
� + sh

= �R−��� − R−�− sh�
� + sh

�
−

+ �R−�− sh�
� + sh

�
+

, �A6�

where the constant R−�−sh� is evaluated as

R−�− sh� =
�sa + sh

�sbg + sh�T−�− sh�
. �A7�

The Wiener-Hopf equation can then be rearranged into the de-
sired form

− Ds

sbg + �

�sa + �
�U+���T+��� −

�0g*�p�R−�− sh�
� + sh

= �−���R−��� +
�0g*�p��R−��� − R−�− sh��

� + sh
. �A8�

Equating both left- and right-hand sides of �A8� to an entire
function, say ET���,

ET��� = �−���R−��� +
�0g*�p��R−��� − R−�− sh��

� + sh
�A9�

− ET��� = Ds

sbg + �

�sa + �
�U+���T+��� +

�0g*�p�R−�− sh�
� + sh

.

�A10�

By the Abel theorem �41� and the extended Liouville’s theorem
�42�, the entire function ET��� must be identically zero. Hence,

�−��� =
�0g*�p�
� + sh

�R−�− sh�
R−���

− 1� �A11�

�U+��� = −
�0g*�p��sa + �R−�− sh�
�� + sh��sbg + ��DsT+���

. �A12�

By substituting �A12� into Eqs. �53� and �54�, one can obtain
both Asy��� and Bsy���,

Asy��� = −
�0g*�p��sa + �R−�− sh�
�� + sh��sbg + ��DsT+���

, �A13�

Bsy��� =
e15Cf�0g*�p��sa + �R−�− sh�

. �A14�

for various electro-mechanical coupling coefficients „k̃e… „a…
ent electric source GE /�0
tion
�11�� + sh��sbg + ��DsT+���
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The procedure of solving the electric potential-displacement
Wiener-Hopf equation �59� is almost identical. Substituting Eq.
�A1� into �59� yields

Ds�sbg + ��
e15

2 �1 − Cf� + �11c̃44

�D+���T+���

�sa + ���s� + �
= �−���S−��� +

�0g*�p�S−���
� + sh

�A15�
where

S−��� ª
�sa + ���s� + �

�sbg + ��T−���
�A16�

By using the additive decomposition mentioned above, the
Wiener-Hopf equation can then be rearranged into the desired
form

Ds�sbg + ��
e15

2 �1 − Cf� + �11c̃44

�D+���T+���

�sa + ���s� + �
−

�0g*�p�S−�− sh�
� + sh

= �−���S−��� +
�0g*�p��S−��� − S−�− sh��

� + sh
�A17�

where the constant S−�−sh� is evaluated as

S−�− sh� =
�sa + sh��s� + sh

�sbg + sh�T−�− sh�
. �A18�

Equating both the left- and right-hand sides of �A17� to an
entire function, say ET���,

ET��� = �−���S−��� +
�0g*�p��S−��� − S−�− sh��

� + sh
�A19�

ET��� =
Ds�sbg + ���D+���T+���

�e15
2 �1 − Cf� + �11c̃44��sa + ���s� + �

−
�0g*�p�S−�− sh�

� + sh
.

�A20�
Application of the Abel theorem �41� and the extended Liouville’s
theorem �42� reveals that the entire function ET��� must be iden-
tically zero. Hence,

�−��� =
�0g*�p�
� + sh

�S−�− sh�
S−���

− 1� �A21�

�D+��� = −
�0g*�p��sa + ���s� + �S−�− sh��e15

2 �1 − Cf� + �11c̃44�
�� + sh��sbg + ��T+���Ds

�A22�

The antisymmetry solution, Aan��� and Ban���, can then be ob-
tained by substituting �A22� into Eqs. �56� and �57�,

Aan��� = −
�0g*�p��sa + ��s� + �S−�− sh�e15

�sa − ��sbg + ��T+���Ds

, �A23�

Ban��� =
�0g*�p��sa + ��S−�− sh�c̃44

�s� − ��sbg + ��T+���Ds

. �A24�
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Evolution of Wrinkles in
Elastic-Viscoelastic Bilayer Thin
Films
This paper develops a model for evolving wrinkles in a bilayer thin film consisting of an
elastic layer and a viscoelastic layer. The elastic layer is subjected to a compressive
residual stress and is modeled by the nonlinear von Karman plate theory. A thin-layer
approximation is developed for the viscoelastic layer. The stability of the bilayer and the
evolution of wrinkles are studied first by a linear perturbation analysis and then by
numerical simulations. Three stages of the wrinkle evolution are identified: initial growth
of the fastest growing mode, intermediate growth with mode transition, and, finally, an
equilibrium wrinkle state. �DOI: 10.1115/1.2043191�
1 Introduction
Complex wrinkle patterns have been observed in various thin-

film systems, typically with integrated hard and soft materials.
The wrinkles are a nuisance in some applications �1,2�, but may
be used as stretchable interconnects for flexible electronics �3,4�
or biological assays �5�. Diverse wrinkle patterns can be generated
by engineering the surface structures or chemistry with potential
applications for micro- and nanoscale fabrication �6,7�. It is also
possible to extract mechanical properties �e.g., elastic modulus
and residual stress� of both organic and inorganic thin-film mate-
rials from wrinkle patterns �8,9�. Quantitative understanding of
the wrinkling behavior is essential for these applications.

The underlying mechanism of wrinkling has been generally un-
derstood as a stress-driven instability, similar to Euler buckling of
an elastic column under compression. For a solid film bonded to a
substrate, however, the instability is constrained. If the substrate is
elastic, there exists a critical compressive stress beyond which the
film wrinkles with a particular wavelength selected by minimizing
the total elastic energy in the film and the substrate �10–12�. Un-
der a typical compressive stress, a wrinkle forms when the sub-
strate is considerably softer than the film. If the substrate is vis-
cous �e.g., glasses and polymers at high temperatures�, wrinkling
becomes a kinetic process �13,14�. Since the viscous substrate
does not store elastic energy, a compressed blanket film on top is
always energetically unstable. The viscous flow in the substrate
controls the kinetics of wrinkle growth, selecting a fastest growing
wavelength. More generally, if the substrate is viscoelastic �e.g.,
cross-linked polymers�, both energetics and kinetics play impor-
tant roles. A spectrum of evolving wrinkle patterns has been ob-
served, experimentally, in metal/polymer bilayers �15�, exhibiting
a peculiar kinetic process. A linear perturbation analysis has
shown that the viscoelastic property of the substrate has a pro-
found effect on the stability and kinetics of the wrinkling process
�16�. This paper develops a model that allows direct simulation of
wrinkle evolution in thin elastic-viscoelastic bilayers beyond the
limit of linear perturbation analysis.

The plan of the paper is as follows. Section 2 presents the
model formulation, which consists of a summary of the nonlinear
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von Karman plate theory for the elastic layer and the development
of a thin-layer approximation for the viscoelastic layer. Although
the model is applicable for two-dimensional wrinkle patterns, the
remainder of this study focuses on one-dimensional wrinkles un-
der the plane-strain condition. Section 3 performs a linear pertur-
bation analysis. Section 4 reviews a solution for the equilibrium
state at the elastic limit. In Sec. 5, numerical simulations are con-
ducted, showing the transient evolution process. Section 6 con-
cludes with a summary of results.

2 Model Formulation
Figure 1 shows the model structure considered in this study: an

elastic layer of thickness hf lying on a viscoelastic layer of thick-
ness H, which, in turn, lies on a rigid substrate. At the reference
state �Fig. 1�a��, both layers are flat, and the elastic layer is sub-
jected to an in-plane biaxial compressive stress �0 �i.e., �0�0�.
The surface of the bilayer is free of tractions. Upon wrinkling
�Fig. 1�b��, the elastic layer undergoes both in-plane and out-of-
plane displacements to relax the residual stress, and the viscoelas-
tic layer deforms concomitantly. Both the upper and lower inter-
faces of the viscoelastic layer are assumed to remain bonded. This
section develops a model that couples the elastic and viscoelastic
deformation in the bilayer. For convenience, a Cartesian coordi-
nate system is set up with the x1-x2 plane coinciding with the
interface between the two layers, as shown in Fig. 1�a�.

2.1 Deformation of the Elastic Layer. We employ the non-
linear von Karman plate theory �17� to model the elastic layer. Let
w be the lateral deflection, u� the in-plane displacement ��
=1,2�, q the normal traction at the interface with the viscoelastic
layer, and �� the shear tractions at the same interface. Equilibrium
requires that

q = − Df
�4w

�x��x��x��x�

+ N��

�2w

�x��x�

+ ��

�w

�x�

�1�

�� =
�N��

�x�

�2�

where

Df =
Efhf

3

12�1 − � f
2�

�3�

N�� = �0hf��� +
Efhf

1 − �2 ��1 − � f���� + � f�		���� �4�

f
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��� =
1

2
� �u�

�x�

+
�u�

�x�
� +

1

2

�w

�x�

�w

�x�

�5�

Here Ef is the Young’s modulus of the elastic layer, � f the Pois-
son’s ratio, Df the flexural rigidity, N�� the in-plane membrane
force, ��� the in-plane strain, and ��� the Kronecker delta. The
Greek subscripts � and � take on the values of the in-plane coor-
dinates 1 and 2, and a repeated Greek subscript implies summa-
tion over 1 and 2.

Note that, a nonlinear term is included in Eq. �5� to account for
moderately large deflections of the elastic layer. In addition, the
coupling between the in-plane deformation and the lateral deflec-
tion in Eq. �1� introduces further nonlinearity. The nonlinear equa-
tions have been widely used for analyses of buckle-delamination
in thin films �18�.

2.2 Deformation of a Viscoelastic Thin-Layer. Next con-
sider the viscoelastic layer. The linear theory of viscoelasticity
�19� is adopted, where the stress-strain relation is described in an
integral form with a shear relaxation modulus 
�t� and Poisson’s
ratio ��t�, both time dependent, in general. The Laplace transform
of the stress-strain relation has a form identical to that of linear
elasticity with the elastic shear modulus 
 and Poisson’s ratio �
replaced by s
̄�s� and s�̄�s�, respectively, where a bar over a
variable designates its Laplace transform with respect to time t
and s is the transform variable. Therefore, the Laplace trans-
formed solution of a viscoelastic problem can be obtained directly
from the solution of a corresponding elastic problem, namely, the
correspondence principle. The final solution for the viscoelastic
problem can then be realized upon inverting the transformed
solution.

For the present study, the viscoelastic layer is stress free ini-
tially �t=0� and subjected to normal and shear tractions at the top
surface for t�0, namely,

�33 = S3�x1,x2,t� and �3� = S��x1,x2,t� at x3 = 0 �6�
At the lower interface, the displacement is fixed

u� = u3 = 0 at x3 = − H �7�
In the following, a thin-layer approximation is developed to solve
for the response of the viscoelastic layer subjected to arbitrary
tractions.

A previous study by Huang �16� solved a similar problem, but
under the plane-strain condition, where S2=u2=0, and the trac-

Fig. 1 Schematic of an elastic-viscoelastic bilayer on a rigid
substrate: „a… the reference state and „b… a wrinkled state
tions at the top surface take the form
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S1 = A�t�sin kx1 �8�

S3 = B�t�cos kx1 �9�

with a constant wave number k and arbitrarily time-dependent
amplitudes A�t� and B�t�. The Laplace transform of the displace-
ments at the top surface was obtained as follows:

ū1�x1,s� =
1

2ks
̄�s�
�	11�s�̄,kH�Ā�s� + 	12�s�̄,kH�B̄�s��sin�kx1�

�10�

ū3�x1,s� =
1

2ks
̄�s�
�	21�s�̄,kH�Ā�s� + 	22�s�̄,kH�B̄�s��cos�kx1�

�11�

where

	11 =
1 + �

4

� sinh�2kH� + 2kH

� cosh2�kH� + �kH�2 + �1 − �

2
�2 �12�

	22 =
1 + �

4

� sinh�2kH� − 2kH

� cosh2�kH� + �kH�2 + �1 − �

2
�2 �13�

	12 = 	21 = −

��1 − ��
2

sinh2�kH� + �kH�2

� cosh2�kH� + �kH�2 + �1 − �

2
�2 �14�

and �=3−4s�̄�s�.
The above solution shows that, in general, the surface of the

viscoelastic layer undergoes both out-of-plane and in-plane dis-
placements and they are coupled. However, in two special cases,
the two displacements can be decoupled. In the first case, the
viscoelastic layer is infinitely thick �kH→� and incompressible
��=0.5�, which has been considered in the previous study �16�. In
the other case, as will be considered in the present study, the
viscoelastic layer is very thin �kH→0�, for which Eqs. �10� and
�11� reduce to

ū1�x1,s� =
1

2ks
̄�s�
�2kHĀ�s� −

1 − 4�

2�1 − ��
�kH�2B̄�s��sin�kx1�

�15�

ū3�x1,s� =
1

2ks
̄�s�
�1 − 2�

1 − �
�kH�B̄�s�

−
1 − 4�

2�1 − ��
�kH�2Ā�s��cos�kx1� �16�

By the thin-layer approximation, only the leading terms in kH are
retained in Eqs. �15� and �16�. In addition, the Poisson’s ratio has
been assumed to be a constant independent of time, considering
the factor that the Poisson’s ratio is typically a weak function of
time. If the viscoelastic layer is incompressible �i.e., �=0.5�, how-
ever, Eq. �16� takes a different form

ū3�x1,s� =
1

2ks
̄�s�
�2

3
�kH�3B̄�s� + �kH�2Ā�s��cos�kx1� �17�

where the first term in the brackets scales with �kH�3 instead of
kH in Eq. �16�. On the other hand, Eq. �15� remains valid. As will
be shown later, this leads to different kinetics of wrinkling for
compressible and incompressible viscoelastic layers.
To be specific, consider the Kelvin model of linear viscoelas-
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ticity, modeled by a mechanical analog consisting of a spring and
a dashpot in parallel, for which the relaxation modulus is


�t� = 
 + ���t� �18�

where 
 is the stiffness of the spring, representing the elastic
shear modulus at the rubbery limit, and � is the viscosity. The
Laplace transform of the relaxation modulus is


̄�s� =



s
+ � �19�

After substituting �19� into Eqs. �15� and �16�, inverse Laplace
transform leads to

�u1

�t
=

H

�
S1 −

1 − 4�

4�1 − ��
H2

�

�S3

�x1
−




�
u1 �20�

�u3

�t
=

1 − 2�

2�1 − ��
H

�
S3 +

1 − 4�

4�1 − ��
H2

�

�S1

�x1
−




�
u3 �21�

Similarly, for an incompressible viscoelastic layer ��=0.5�, the
inverse transform of Eq. �17� leads to

�u3

�t
= −

H3

3�

�2S3

�x1
2 −

H2

2�

�S1

�x1
−




�
u3 �22�

Equations �20� and �22� have the similar form as the Reynold’s
lubrication theory for nearly parallel flow of a thin liquid layer
�14,20�, but with an additional term accounting for the elastic
limit of the viscoelastic layer.

For the present study, we assume a compressible viscoelastic
layer �i.e., ��0.5� and further neglect the H2 terms in Eqs. �20�
and �21� for thin-layer approximation, which leads to

�u1

�t
=

H

�
S1 −




�
u1, �23�

�u3

�t
=

1 − 2�

2�1 − ��
H

�
S3 −




�
u3 �24�

Here the two traction components are assumed to have compa-
rable magnitudes and the thickness of the viscoelastic layer is
assumed to be small compared to the wavelength �L=2� /k�.
Equation �23� is equivalent to a shear lag model, which assumes
uniform shear stress across the thin layer. Similar models have
been used for both elastic and viscous layers �21,22�. Equation
�24� is similar to the Winkler model for elastic foundation �23� but
includes a time derivative term due to the viscous effect. The two
equations are uncoupled under the thin-layer approximation.

In the above development, plane-strain deformation and peri-
odic surface tractions have been assumed. The restriction of peri-
odic tractions has been relaxed by using differentiation of the
surface tractions with respect to x1 in places of the particular wave
number after inverse Laplace transform. The resulting equations,
�20� and �21�, are apparently independent of wave number and
can be used for arbitrary tractions by linear superposition of their
Fourier components. At the end, the in-plane and out-of-plane
responses are decoupled by the thin-layer approximation. There-
fore, the restriction of plane-strain deformation can be relaxed by
generalizing the in-plane response, Eq. �23�, for both x1 and x2
directions, which leads to

�u�

�t
=

H

�
S� −




�
u� �25�

for �=1,2. Equations �24� and �25� then represent the approxi-
mate solution for the three-dimensional response of a thin vis-
coelastic layer subjected to the boundary conditions in Eqs. �6�
and �7�.

In the case of an incompressible viscoelastic layer, however, the
Winkler-type equation for the out-of-plane displacement �Eq.

�24�� breaks down and the decoupling is not applicable. The
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coupled equations, �20� and �22�, must be used in this case. Gen-
eralization of the plane-strain response to the three-dimensional
would take the similar form as the lubrication theory �14�, but will
not be further pursued in the present study.

2.3 Coupled Evolution Equations. The interface between
the elastic and viscoelastic layers is assumed to remain bonded
during deformation. Consequently, the displacements and trac-
tions are continuous across the interface, which couples the equi-
librium equations of the elastic layer, Eqs. �1� and �2�, with the
time-dependent responses of the viscoelastic layer, Eqs. �24� and
�25�, and leads to

�w

�t
=

1 − 2�

2�1 − ��
H

�
�− Df

�4w

�x��x��x��x�

+ N��

�2w

�x��x�

+
�N��

�x�

�w

�x�
�

−



�
w �26�

�u�

�t
=

H

�

�N��

�x�

−



�
u� �27�

Equations �26� and �27� are coupled, nonlinear evolution equa-
tions, which may be solved numerically to simulate three-
dimensional deformation of an elastic-viscoelastic bilayer and
evolution of the resulting two-dimensional wrinkle patterns. In the
remainder of this paper, however, we focus our attention on plane-
strain deformation and one-dimensional wrinkles only, leaving the
two-dimensional wrinkles for a subsequent study. The reduced
equations for the plane-strain wrinkles are summarized as follows:

�w

�t
=

1 − 2�

2�1 − ��
H

�
�− Df

�4w

�x4 + N
�2w

�x2 +
�N

�x

�w

�x
� −




�
w �28�

�u

�t
=

H

�

�N

�x
−




�
u �29�

N = �0hf +
Efhf

1 − � f
2� �u

�x
+

1

2
� �w

�x
�2� �30�

Recently, Huang et al. �24� developed a similar model to simu-
late the evolution of two-dimensional wrinkle patterns in elastic
films on soft substrates, where the viscoelastic Kelvin model was
used to relate the lateral deflection and the normal traction, similar
to Eq. �24�, but the relation between the in-plane displacement and
the shear traction was taken to be linear elastic. While the atten-
tion there was focused on various equilibrium wrinkle patterns,
the interest of the present study is the temporal evolution of
wrinkles.

3 Linear Perturbation Analysis
Assume a small deflection of the elastic layer in the form of

w�x,t� = A�t�cos kx �31�

For the linear perturbation analysis, the evolution of the in-plane
displacement is uncoupled from the lateral deflection and, there-
fore, ignored. Inserting �31� into Eq. �28� and retaining only the
leading-order terms in A, we obtain that

dA

dt
=

�Ef − 


�
A�t� �32�

where

� =
�1 − 2��k2Hhf

24�1 − ���1 − � f
2�
�− k2hf

2 −
12�1 − � f

2��0

Ef
� �33�
Solving Eq. �32� leads to
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A�t� = A0 exp�s
t

�
� �34�

where A0 is the initial perturbation amplitude, �=� /Ef is a char-
acteristic time scale, and s=�−
 /Ef is the dimensionless growth
rate of the perturbation. The stability of the bilayer therefore de-
pends on the sign of the growth rate. If s�0 for all wave numbers
k, the bilayer is stable and remains flat. Otherwise, if s�0 for any
permissible wave numbers, the bilayer is unstable and perturba-
tions grow to form wrinkles. In this case, the amplitude grows
exponentially with time at the initial stage. A more sophisticated
analysis �16� has shown that the initial growth can be nonexpo-
nential if the viscoelastic layer has a finite elastic modulus at the
glassy state �elastic limit as t→0�.

Figure 2 plots the growth rate as a function of the perturbation
wavelength �L=2� /k� for different ratios between the rubbery
modulus of the viscoelastic layer and the elastic modulus of the
elastic layer. At the limiting case when 
=0, s=� and the
growth rate is positive �recall that �0�0� for long wave pertur-
bations, as shown by the dashed line in Fig. 2. Consequently, the
bilayer is always unstable. The critical wavelength is

Lc = �hf	−
Ef

3�1 − � f
2��0

�35�

which is identical to the critical length of Euler buckling. The
growth rate is positive when L�Lc and peaks at the wavelength

Lm = �hf	−
2Ef

3�1 − � f
2��0

�36�

Similar results were obtained for an elastic film on a viscous layer
�14,25�, where the fastest growing wavelength Lm is, however,
shorter by 13.4% due to the incompressibility of the viscous layer.
Using typical values for a thin aluminum layer: Ef =70 GPa, � f
=0.35, hf =40 nm, and �0=−100 MPa, we obtain Lc=2.05 
m
and Lm=2.90 
m. The latter compares closely to the initial wave-
lengths observed in experiments by Yoo and Lee �15� despite the
rough estimate of the stress.

As the ratio 
 /Ef increases, the growth rate decreases; the
curve in Fig. 2 shifts down, but without any change in the shape.
As a result, the critical wavelength increases, and a second critical
wavelength emerges at the long wave end. The growth rate is now

Fig. 2 Initial growth rate as a function of wavelength by the
linear perturbation analysis, for various ratios between the rub-
bery modulus of the viscoelastic layer and the Young’s modu-
lus of the elastic layer
positive within a window bounded by the two critical wave-
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lengths. On the other hand, the fastest growing wavelength does
not change, but the corresponding growth rate decreases. The fast-
est growth rate reduces to zero at a critical ratio

�


Ef
�

c

=
3�1 − � f

2��1 − 2��
2�1 − ��

H

hf
��0

Ef
�2

�37�

The bilayer becomes stable when 
 /Ef is greater than the critical
ratio. Alternatively, Eq. �37� may be rewritten to give the critical
compressive stress, below which a bilayer with the given thick-
ness ratio and moduli ratio is stable. The critical condition is iden-
tical to that for an elastic film on a thin elastic substrate with the
shear modulus 
=
 �12,16�.

It is noted that, by the critical condition in Eq. �37�, the stability
of an elastic-viscoelastic bilayer depends on the rubbery modulus
�i.e., the long-term limit of the relaxation modulus� of the vis-
coelastic layer, but independent of the initial modulus �e.g., the
glassy state�. In other words, despite that the viscoelastic layer is
initially stiff or even rigid, the bilayer “foresees” the subsequent
softening of the layer and becomes unstable spontaneously. The
time scale of wrinkle growth is proportional to the viscosity, and
the growth rate increases as the rubbery modulus decreases. The
wavelength of the fastest growing mode, however, is independent
of the viscoelastic layer, as given in Eq. �36�. Our previous study
�16� showed that the fastest growing wavelength weakly depends
on the thickness ratio and Poisson’s ratio. The thin-layer approxi-
mation in the present study leads to a reasonably accurate wave-
length, but underestimates the growth rate for the fastest growing
mode when the thickness ratio H /hf is larger than 2.

4 Equilibrium Wrinkles
Setting � /�t=0 in Eqs. �28� and �29� leads to two coupled non-

linear ordinary differential equations, from which one can solve
for equilibrium states. The solution is identical to that for an elas-
tic film on a thin elastic substrate with the shear modulus 
=
.
The latter has been obtained by an energy minimization procedure
�12,16�, as summarized below. First, the equilibrium amplitude of
a sinusoidal wrinkle with a wave number k is given by

Aeq =
2	1 − � f

2

k
�−

�0

Ef
−

�khf�2

12�1 − � f
2�

−
2�1 − ��
1 − 2�




Ef

1

k2Hhf
�1/2

�38�
It can be confirmed that only when the bilayer is unstable does
there exist nonzero, real-valued equilibrium wrinkle amplitudes.
Furthermore, minimization of the elastic strain energy in the bi-
layer with respect to the wave number selects an equilibrium
wrinkle wavelength

Leq = �hf� 2�1 − 2��
3�1 − ���1 − � f

2�
Ef




H

hf
�1/4

�39�

The corresponding wrinkle amplitude can be obtained from Eq.
�38� with k=2� /Leq. Again, using typical values: Ef =70 GPa,
� f =0.35, hf =40 nm, 
=0.01 MPa, �=0.45, H=400 nm, and
�0=−100 MPa, we obtain Leq=7.00 
m and Aeq=71.9 nm. It is
noted that Eq. �39� underestimates the equilibrium wavelength
when the thickness ratio H /hf is larger than 2.

Comparing the equilibrium wrinkle wavelength to the initially
fastest growing wavelength given by Eq. �36�, we note that the
two wavelengths can be totally independent. The fastest growing
wavelength, which dominates the initial growth, is determined by
the kinetics and depends on the compressive stress in the elastic
layer, but independent of the viscoelastic layer. The equilibrium
wavelength, on the other hand, is determined by energetics and
depends on the thickness and rubbery modulus of the viscoelastic
layer, but independent of the stress in the elastic layer. Such inde-
pendence may enable simultaneous determination of the residual
stress and rubbery modulus from the initial and final wrinkle

wavelengths, respectively.
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At the equilibrium state, the shear traction at the interface is
nearly zero and the lateral displacement approximately takes the
form �12,14�

u = 1
8kAeq

2 sin�2kx� �40�

where k=2� /Leq. The wavelength of the in-plane displacement is
half of the wrinkle wavelength at the equilibrium state.

Fig. 3 Evolution of the lateral deflection w and the in-plane
displacement u by numerical simulation with a sinusoidal ini-
tial perturbation
Fig. 4 Amplitude of a sinusoidal wrinkle as a function of time

Journal of Applied Mechanics
5 Numerical Simulations
In this section, we simulate the evolution of wrinkles by nu-

merically integrating the nonlinear equations, �28� and �29�. For
simplicity, we use the explicit forward-time-center-space �FTCS�
finite difference method. The algorithm is conditionally stable. To
achieve sufficient accuracy, a small space step �x is first specified.
Next, the time step �t is determined by the stability and conver-
gence of the numerical results. In the following simulations, we
use �x=1.0hf and �t=0.1� /Ef. The time is normalized by the
time scale �=� /Ef, which ranges widely from 1 
s to 1 s, de-
pending on the material of the viscoelastic layer and the tempera-
ture. In all simulations, the periodic boundary condition is as-
sumed.

The bilayer is in equilibrium at the reference state �Fig. 1�a��
with no tractions at the interface. By introducing a small pertur-
bation displacement to the reference state as the initial condition,
the system evolves until it reaches another equilibrium state. First,
we start with a sinusoidal deflection of amplitude A0=0.01hf and
zero in-plane displacement at t=0. The wavelength L=30hf was
selected to be close to the fastest growing wavelength �Lm

=26.9hf� to save the computational time. Other parameters are
�0=−0.01Ef, 
=0.0001Ef, H=10hf, � f =0.3, and �=0.45. As
noted before, the present model underestimates the growth rate
and the equilibrium wavelength for thick viscoelastic layers �H

Fig. 5 Numerical simulation of evolving wrinkles with a ran-
dom initial perturbation. The left column shows the deflection
of the elastic layer, and the right column shows the corre-
sponding Fourier spectra.
�2hf�. Nevertheless, the wrinkling kinetics should be similar, and

NOVEMBER 2005, Vol. 72 / 959



in the numerical simulations, we use H=10hf as in the metal/
polymer bilayer experiments by Yoo and Lee �15�. Figure 3 shows
snapshots of the evolving displacements. The amplitude of the
lateral deflection grows with time, but the wavelength remains
constant for the entire period of the simulation up to t=50,000�.
Meanwhile, relatively small in-plane displacement evolves con-
comitantly, but with a wavelength half of the wrinkle wavelength,
as predicted by the equilibrium solution in Eq. �40�. Figure 4
shows the wrinkle amplitude as a function of time. The amplitude
first grows exponentially, as predicted by the linear perturbation
analysis �shown as the straight dashed line�. Starting at about t
=20,000�, the growth rate deviates from the linear behavior and
gradually approaches a plateau. The amplitude essentially remains
constant after t=40,000�, indicating that an equilibrium state has
been reached. The equilibrium amplitude given by Eq. �38� for the
selected wavelength �L=30hf� is Aeq=0.537hf, as indicated by the
horizontal dotted line in Fig. 4. The result from the numerical
simulation agrees closely with the analytical solutions by the lin-
ear perturbation analysis at the initial stage and by the energetic
analysis for the equilibrium amplitude.

In the above simulation, the wrinkle wavelength is arbitrarily
selected a priori and the evolution stops when the corresponding
equilibrium state is reached. However, the wavelength is not nec-
essarily the equilibrium wavelength selected by energy minimiza-
tion, as given in Eq. �39�. In other words, the equilibrium state
reached in the previous simulation is energetically unstable. To
further relax the strain energy, continual evolution is possible once
the equilibrium state is perturbed with different wavelengths �14�.

Fig. 6 Evolution of the dominant wrinkle wavelength by nu-
merical simulation: „a… short time evolution and „b… long time
evolution
In real situations, various sources �e.g., thermal fluctuation and
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surface defects� may induce the initial perturbation, which is ran-
dom, in general. Figure 5 shows a numerical simulation of evolv-
ing wrinkles that starts from a random initial perturbation. The
in-plane displacement is again zero initially �not shown�. Other
parameters are �0=−0.01Ef, 
=0.00001Ef, H=10hf, � f =0.3,
and �=0.45. For each snapshot of the wrinkle, the corresponding
Fourier spectrum is shown to the right. Although many wave-
lengths coexist in the initial perturbation, only those of interme-
diate wavelengths grow and the fastest growing wavelength domi-
nates at the initial stage. Consequently, an increasingly regular
wrinkle emerges from the initially random perturbation. As the
evolution continues, the amplitude grows and the wavelength in-
creases. After a sufficiently long time, only one wavelength re-
mains and the wrinkle reaches an equilibrium state. Figure 6 plots
the evolution of the dominant wavelength �maximum intensity in
the Fourier spectrum�, and Fig. 7 shows the root-mean square
�rms� of the wrinkle as a function of time. Also plotted in Figs. 6
and 7 are the simulation results with a larger rubbery modulus,

=0.0001Ef, for comparison.

From the numerical simulations, three stages of wrinkle evolu-
tion can be identified: initial growth of the fastest growing mode,
intermediate growth with mode transition, and, finally, an equilib-
rium wrinkle state. Such behavior qualitatively agrees with the
experimental observations in a metal/polymer bilayer film �15�. At
the initial stage, the wavelength of the fastest growing mode pre-
dicted by the linear perturbation analysis is Lm=26.9hf, which is
independent of the rubbery modulus. Figure 6�a� shows that the
dominant wavelengths in the two simulations are indistinguish-
able up to t=2�104�, and the wavelength is close to the predicted

Fig. 7 The root mean square „RMS… of the wrinkle as a func-
tion of time: „a… short-time evolution and „b… long-time
evolution
value. During this stage, the wrinkle amplitude grows exponen-
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tially, but the growth rate depends on the rubbery modulus. In
Figure 7�a�, the two dashed lines indicate the exponential growth
predicted by the linear perturbation analysis, where the larger
modulus leads to slower growth. At the intermediate stage, both
the amplitude and wavelength of the wrinkle evolve toward the
equilibrium state. The analytical solutions for the equilibrium state
are indicated as dashed lines in Figs. 6�b� and 7�b�. For 


=0.00001Ef, the equilibrium wrinkle has a wavelength Leq
=60.0hf and an amplitude Aeq=1.63hf �rms=1.15hf�. For 


=0.0001Ef, the equilibrium wrinkle has a wavelength Leq
=33.7hf and an amplitude Aeq=0.619hf �rms=0.438hf�. The equi-
librium states agree closely with the numerical results. It is noted
that, although the initial growth is slower, the time to reach the
equilibrium state is significantly shorter with the larger rubbery
modulus for the viscoelastic layer.

6 Summary
We have developed a nonlinear model for temporal evolution of

wrinkles in elastic-viscoelastic bilayer thin films. The model
couples a nonlinear theory of elastic plates with a thin-layer ap-
proximation of linear viscoelastic responses. Although the model
is three-dimensional in nature, the analyses and numerical simu-
lations of the present study have focused on plane-strain deforma-
tion. Analytical solutions are obtained for the linear perturbation
analysis and the equilibrium state. Numerical simulations illus-
trate the evolution process from the initial growth to the equilib-
rium state. The results show that the kinetics of wrinkling strongly
depend on the viscoelastic layer.
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The analysis of the forces and the rigidity of roller bearings is a
multi-body contact problem, so it cannot be solved by contact
boundary element method (BEM) for two elastic bodies. Based on
the three-dimensional elastic contact BEM, according to the char-
acter of roller bearing, the new solution given in this paper re-
places the roller body with a plate element and traction subele-
ment. Linear elements are used in non-contact areas and a
quadratic element is used in the contact area. The load distribu-
tion among the roller bodies and the load status in the inner
rolling body can be extracted. �DOI: 10.1115/1.2041662�

Introduction
Roller bearings are critical parts of rolling mills. Four-row

roller bearings are normally used because of heavy loads and high
speed. How long a roller bearing is used will affect the produc-
tivity of the rolling mill and the manufacturing cost �Shaowei,
�1��. It is very important to consider the peculiar load distribution
when choosing correct bearings and calculating bearing life. How-
ever, up to now, calculations are still based on ideal conditions
�Harris, �2�, Xuanhuai �3��. In fact, the assumed ideal conditions
do not exist because the shape of the roller bearing and the exter-
nal loading are very complicated. In addition, the distributed
three-dimensional �3D� contact pressure on each row of the roller
bearings is not uniform. It is improper to calculate contact pres-
sure by assuming ideal conditions. Presently, many scholars have
adopted mathematical methods to calculate the distribution of
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contact pressure on roller bearings �Jian �4�, Honeygosky �7�, and
Jianxin, �10��, but their calculations assume only a two-
dimensional distribution.

This paper is based on a three-dimensional elastic contact
boundary element method �BEM�. This new method adopts trac-
tion subelements �Xuedao �5�, Yujin �12�� and utilizes plate ele-
ments, so the roller bearing contact problem changes into a two-
body elastic contact problem without friction. The radial
displacement of the rollers is calculated by the Hertz contact for-
mula and is considered as a gap to be placed into the matrix
equation �Chang’an �8� and Chang’an �9��. Thereby, the three-
dimensional distribution of contact pressure on the roller bearing
can be solved.

This method is suitable for multi-row tapered-roller bearings
and other combinations of tapered cylindrical roller bearings.

Three-Dimensional Contact BEM for Roller Bearings

The special conditions for roller bearings follow:
�1� There are many contact bodies �Chang’an �9��.
�2� The dimensions of the inner and outer rings are much larger

than the rollers, so all the rollers are considered to be the same.
�3� The rollers are assumed to have line contact with both the

inner and outer rings of the roller bearing.
�4� The rolling friction coefficient is so small that the friction

force may be neglected.
Based on these conditions, the authors adopted the traction sub-

element method to divide meshes on the contact surface of the
roller bearing and have substituted a plate element to replace the
middle rollers.

Traction Subelement Method. Figure 1 shows that the roller
bearing can be divided into boundary elements according to the
arrangement shown in Fig. 2. Assume that element i is in contact
with the roller. The contact traction of this element is equal to the
contact pressure on the roller. Therefore, on this element, its dis-
placement is continuous, but its traction is discontinuous.

According to the contact condition of the roller bearing and the
arrangement of meshes dividing the contact surface, this element
may be divided into three subelements �shown in Fig. 3�. On
subelement �i

1 and �i
2, the traction is continuous, and on subele-

ment �i
3, the traction is equal to zero. Hence, the traction influence

on coefficient is only calculated for �i
1 and �i

2. Because the dis-
placement distribution is continuous, the displacement influence
coefficient can be calculated directly for the whole element.

Since the traction distribution on the subelement �i
1 and �i

2 is
unknown, a quadratic distribution along the length and width of
the two subelements �shown in Fig. 3� is chosen as an approxi-
mation. So the traction ti on the subelement can be expressed as

follows:
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�ti
1 = �

j=1

2

f1��1�f1��2�ti
j

ti
2 = �

j=3

4

f2��1�f2��2�ti
j� �1�

By calculating �i
1 and �i

2, respectively, and adding them, the
traction influence coefficient for the whole element can be ob-
tained. Since the ratio of length to width on �i

1 and �i
2 is much

larger �usually no less than 20�, the elements of �i
1 and �i

2 must be
divided further until the ratio of length to width is not more than
3, otherwise a singularity will occur when the traction influence
coefficient is calculated.

Plate Element. A roller bearing is made up of an inner ring, an
outer ring and several rollers �Fig. 1�. The contact condition of
one of these rollers is shown in Fig. 4 �Yujin �11�, Brebbia �13��
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+ u�3
Q0

B

� up
0 	Q0

k � �CF, k = A,B �3�

�C = �CC + �CF �4�

where �C, �CC, �CF are assumed to be the contact zone, the con-
tact zone in fact, and the non-contact zone in �C, respectively.

From Eqs. �2�–�4� and Fig. 4, we know that all the rollers are

assumed to have only their radial displacements u�3
Qi and u�3

Qi� af-
fecting the contact conditions, then the displacements in the other
two directions are equal to zero. With the radial displacements u�3

Qi

and u�3
Qi� being substituted into the system matrix equation incor-

Fig. 1 Four row short cylinder roller bearing
Fig. 2 Boundary discrete model
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porating the calculated gap information, further calculating preci-
sion will not be affected when the system equation is solved it-
eratively. So, in this paper, plate elements, having only radial
displacements �the displacements in the other two directions are
equal to zero� may replace the middle rollers. And the plate ele-
ments are fixed on the inner ring. The contact pairs are Qi� and
Q0

B�i�. Then the multi-body contact problem can be transformed
into a two-body contact problem.

Plate element radial displacements u�3
Qi and u�3

Qi� can be calcu-
lated by the following Hertz contact formula. For cylindrical and
tapered roller bearings, the radial displacement is:


u�3
Qi

u�3
Qi�
� = �0.580
ln4R1R2

b1
2 � + 0.814�

E�

0

0
1.82�1 − ln b2�

E�
�

�
t�3
Q0

A

t�3
Q0

B� �5�

where

b1 = 1.522� PR1R2

E��R2 + R1�

b2 = 1.522� PR1R3

E��R3 − R1�

R1
�™Radius of short cylinder roller �mm�

R2
�™Radius of bearing internal ring �mm�

R3
�™Radius of bearing external ring �mm�

� �™Length of short cylinder roll �mm�

Fig. 3 Distribution of traction on the subelement

Fig. 4 Contact conditions described by plate element. 1. Outer

ring 2. Middle rollers „plate element… 3. Inner ring
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E �™Modulus of elasticity �GPa�
Therefore, when rollers are replaced by plate elements, the total

radial gap is

up
0 = u�3

0 − u�3
Qi − u�3

Qi� �6�

Three-Dimensional Contact BEM for Roller Bearing. A pair
of contact points �Q0

A ,Q0
B� is chosen arbitrarily from the roller

bearing, and the physical strength is not considered. The Somigli-
ana equation is expressed in the following form �Guangxian �15��:

uj�P0
A� = u�k�P0

A�� jk�P0
A�, P0

A � �C
A �7�

�uj�P0
B� = u�k�P0

B�� jk�P0
B�

u�3�P0
B� = up

0 − u�3�Q0
A� 	P0

B � �C
B �8�

where � jk is the direction cosine for the local coordinate � j with
respect to the coordinate xk.

The matrix equation for the discrete boundary of the inner and
outer rings of the roller bearing is

�H�k�u�k = �G�k�t�k k = A,B �9�

where �H�k, �G�k are displacement and traction influence coeffi-
cients matrix of body k, �u�k, �t�k are displacement and traction
row matrices of body k.

According to the contact boundary condition of Eqs. �2�–�8�,
linking the matrix equation of body A and body B, leads to the
system matrix Eq. �10�.

C�X = �F �10�
where

C �™influence coefficients matrix.
�X �™increments of unknown displacement and traction.
�F �™increments of known displacement and traction.
The three-dimensional distribution of contact pressure on the

roller bearing can be obtained by solving the system matrix equa-
tions iteratively.

This method has a high precision because the elastic deforma-
tions of the inner and outer rings of the roller bearing and rollers
are taken into consideration.

Example
The intermediate mill for rolling 2350 alloy aluminum foil is

used as an example for modeling a particular loading of the work
roll. Four short cylindrical roller bearings are mounted on the
work roll shown in Fig. 5. Boundary element models for the roll
and for the chock are shown in Figs. 6 and 7. The roll is divided
into 700 elements with 702 nodes, and the chock is divided into
1296 elements with 1296 nodes. Both of them have 364 node
pairs in possible contact. In the assumed contact zone, the bound-

Fig. 5 Roller bearings mounted on the work roll. 1. Roll 2. Four
row short cylindrical roller bearing 3. Chock 4. Double row an-
gular contact ball bearing.
ary surface is divided into quadratic elements by the rule of trac-
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tion subelement method. The elements of rest boundary surface
are linear elements, and satisfy the rule that the ratio of length to
width is not more than 3. The calculating parameters are shown in
Table 1.

A peculiar load is shown in Figs. 8 and 9 when the roller is
simulated by the plate element. Through the calculations de-
scribed above, we can say that the load on the cylindrical roller
bearings is seriously uneven. The coefficient of unevenness is
about 3.5. The distribution of the load on the end thrust bearing is
also uneven along the circle. About 60% of the rollers bear the

Fig. 6 Boundary element model of the roll

Fig. 7 Boundary element model of the chock

Table 1 2350 aluminum foil mill roller bearing load peculiarity
calculating parameters

Diameter of
roll neck

Length of
roll body

Initial
gap

Modulus of
elasticity

Bend
force

Thrust
force

d /mm L /mm uR/
mm

E /GPa FW/
KN

Fa /KN

165 2350 0.035 210 50 40

Fig. 8 3D distribution of the load on four-row cylinder roller

bearing under open restrain conditions
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total load �Zhanfu �6�, Honeygosky �7��. Compared with the
known result by FEM, the rule of load radial distribution is accor-
dant �Honeygosky �7�, Jianxin �10��. Therefore, the method is
effective for calculating 3D load distribution of roller bearing.

Conclusions
1. Based on the BEM for the three-dimensional elastic contact

problem, a new BEM has been used to calculate the particular 3D
load on the roller bearing. The traction subelements are connected
by the plate element that is used to simulate the roller. Deforma-
tion of roller is calculated by the Hertz contact formula. This
method has utilized a simple calculating model and provides an
effective method.

2. This method can also be used to calculate particular loads for
multi-row tapered-roller bearings and other combinations of ta-

Fig. 9 Circumferential distributions of the load on thrust bear-
ing under open restrain conditions
pered cylindrical roller bearings.

Journal of Applied Mechanics
3. This method is a valid computational tool for the life of roller
bearing and analyzing particular roller bearing loads.
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This technical correspondence presents a surprisingly simple ana-
lytical criterion for the stability of general second-order asymmet-
ric linear systems. The criterion is based on the fact that if a
symmetric system is stable, adding a small amount of asymmetry
would not cause instability. We compute analytically an upper
bound on the allowed asymmetry such that the overall linear sys-
tem is stable. This stability criterion is then applied to robot
grasping arrangements which, due to physical effects at the con-
tacts, are asymmetric mechanical systems. We present an applica-
tion of the stability criterion to a 2D grasp arrangement.
�DOI: 10.1115/1.2042484�

Introduction
This technical correspondence is concerned with the stability of

second-order linear systems that have an asymmetric stiffness ma-
trix. Our goal is to provide an analytical criterion for the stability
of systems of the form

Mp̈ + Kdṗ + Kpp = 0, �1�

where M �Rn�n and Kd�Rn�n are symmetric positive definite,
and Kp�Rn�n is asymmetric. Such systems arise in the linearized
dynamics of robot grasping arrangements �1�, and in other appli-
cations such as feedback control. See, for instance, �2� and �3, p.
36�.

Researchers have taken the following approach to the investi-
gation of general asymmetric systems, where M, Kd, and Kp are
asymmetric. Their approach is based on transforming the asym-
metric system into a symmetric one. The subclass of asymmetric
systems that can be transformed into symmetric systems is called
symmetrizable systems. Inman has introduced necessary and suf-
ficient conditions for a subclass of such systems to be symmetri-
zable via similarity transformation �4�. Ahmadian and Chou have
developed a systematic technique for computing the coordinate
system in which the symmetrizable system is symmetric �5�.
Coghey and Ma have given a condition for transforming the sys-
tem into a decoupled diagonal system �6�. Utilizing equivalence
transformation rather than similarity transformation enables the
subclass of symmetrizable systems to be enlarged �7,8�. All these
results are exact and give conditions for the stability of the origi-
nal asymmetric system. However, only subclasses of asymmetric
systems can be treated in these ways, and the application of sta-
bility criteria based on transformation to symmetric systems is
cumbersome.

In this technical correspondence we develop a simple criterion
for the stability of asymmetric systems of the form �1�. In the
context of robot grasping applications, this stability criterion leads
to a synthesis rule that indicates which contact points and what
preloading profile guarantee stable grasp.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS.
Manuscript received by the ASME Applied Mechanics Division, July 18, 2004; final

revision, March 3, 2005. Review conducted by N. Sri Namachchivaya.

966 / Vol. 72, NOVEMBER 2005 Copyright ©
We make the following two assumptions, which are motivated
by consideration of the grasping application. First, as in many
mechanical systems, we assume that the inertia and damping ma-
trices, M and Kd, are symmetric positive definite matrices. Sec-
ond, we assume that the symmetric part of the stiffness matrix,
�Kp�s= 1

2 �Kp+Kp
T�, is positive definite. This assumption has been

shown to hold true for almost every robot grasping application
�1�.

The stability criterion is based on the idea that if the symmetric
system is asymptotically stable, one can add a bounded amount of
asymmetry and the system will remain stable. In our solution we
compute an upper bound on the norm of �Kp�as= 1

2 �Kp−Kp
T� such

that the eigenvalues of the first-order equation recast from Eq. �1�
are located in the open left half-plane. After establishing the sta-
bility criterion for such systems, we illustrate the applicability of
the result for analyzing the stability of robot grasping arrange-
ments.

Stability of Second-Order Asymmetric Systems
For simplicity we begin with the following system:

p̈ + Kdṗ + Kpp = 0, �2�

which is identical to �1�, except that here M is the identity matrix.
The following theorem states that if the skew-symmetric part of
Kp, �Kp�as, is sufficiently small, the system �2� is globally asymp-
totically stable.

THEOREM 1 (global asymptotic stability). Consider the system
(2). Let ��R be the minimal eigenvalue of Kd. Let ��R be the
minimal eigenvalue of �Kp�s, and let ��R be the matrix norm1 of
the skew-symmetric part of Kp. If

��� � ��� ,

the system (2) is globally asymptotically stable.
Proof: The system �2� can be written as

For global asymptotic stability, it suffices to show that the real
part of the eigenvalues of A is negative. Let ��C be an eigen-
value of A with corresponding nonzero eigenvector �= ��1 ,�2�
�C2n. Note that each �i is a complex vector in Cn. Then

� 0 I

− Kp − Kd
�	�1

�2

 = 	 �2

− Kp�1 − Kd�2

 = �	�1

�2

 .

Since �Kp�s�0, Kp is nonsingular. This implies that �=0 cannot

be an eigenvalue of A. Since ��0, it follows that �1�0� and �2

�0� . Hence, we may assume without loss of generality that
�1

* ·�1=1, where � denotes complex conjugate transpose. Based on
this choice, we can write �2=�1

*�2�1=�1
*��2=�1

*�−Kp�1−Kd�2�
=−�1

*Kp�1−��1
*Kd�1, where we used the relations ��1=�2 and

��2=−Kp�1−Kd�2. Since Kd�0, the scalar �̃=�1
*Kd�1 is positive

real. Similarly, the scalar �̃=�1
*�Kp�s�1 is also positive real. Since

�Kp�as is skew-symmetric, we can write j�̃=�1
*�Kp�as�1, where j

=�−1 and �̃ is real. Substituting these scalars into the quadratic
equation in � gives

�2 + �̃� + �̃ + j�̃ = 0. �3�

Note that every eigenvalue of A satisfies this equation. The solu-
tion of �3� is

1
The matrix norm is defined as �E�=max��Eu� over all vectors �u�	1.

2005 by ASME Transactions of the ASME



˜

�1,2 = 1
2 �− �̃ ± ��̃2 − 4��̃ + j�̃�� . �4�

Let us pause to recall how one computes the square root of a
complex number. Consider a complex number z=a+ jb with a
norm �z�=�a2+b2 and argument 
=arctan�b /a�. Then �z= ± �a2

+b2�1/4�
 /2, and in Cartesian coordinates �z= ± �a2

+b2�1/4�cos�
 /2�+ j sin�
 /2��. Since cos�
�=a /�a2+b2, we use
the trigonometric identity cos�
 /2�=��1+cos�
�� /2 to obtain

Re��z = ±
�a2 + b2�1/4

�2
	1 +

a
�a2 + b2
1/2

.

In our case a= �̃2−4�̃ and b=−4�̃, and �4� implies that

Re��1,2 = −
�̃

2
±

���̃2 − 4�̃�2 + 16�̃2�1/4

2�2

�	1 +
�̃2 − 4�̃

���̃2 − 4�̃�2 + 16�̃2

1/2

.

The requirement Re��1,2�0 introduces an inequality in �̃, �̃, and
�. Rearranging terms in this inequality gives the equivalent in-
equality,

�4�̃ + �̃2�2 � ��̃2 − 4�̃�2 + 16�̃2.

Cancelling similar terms yields the inequality

��̃� � ��̃�̃ . �5�

For stability we must ensure that �5� holds for every �̃, �̃, and �̃.
In other words, �5� must hold for every eigenvalue � and every

associated eigenvector � of A. Therefore we bound �̃, �̃, and �̃ as
follows. First, 0��=�min(�Kp�s)	�1

*�Kp�s�1= �̃. Second, 0��

=�min�Kd�	�1
*Kd�1= �̃. Third, ���= ��Kp�as�� ��1

*�Kp�as�1�= �j�̃�
= ��̃�. Using these bounds, ����� implies that ��̃����̃�̃ for ev-

ery �̃, �̃, and �̃. �
Note that the theorem gives only sufficient stability condition,

and the proof does not indicate what should be the necessary
condition for global asymptotic stability. Next, we present a cor-
ollary that adapts the theorem to a global asymptotic stability
criterion for systems that contain a nonunit inertia matrix.

COROLLARY 2.1. Consider the following system

Mp̈ + Kdṗ + Kpp = 0, �6�

where all parameters are as above, except for the matrix M which
is symmetric positive definite. Let ��0 be the minimal eigenvalue
of M−1/2KdM−1/2. Let ��0 be the minimal eigenvalue of
M−1/2�Kp�sM

−1/2, and let ��R be the matrix norm of
M−1/2�Kp�asM

−1/2. If

��� � ���

the system (6) is globally asymptotically stable.
Proof. We define the coordinate transformation p̃=M1/2p or p

=M−1/2p̃. �A similar transformation appeared in �3, p. 87�.� Note
that the matrices M1/2 and M−1/2 are symmetric positive definite.
Moreover, we have that M =M1/2M1/2 and M−1=M−1/2M−1/2. Sub-
stituting the new coordinates into �1� and premultiplying by M−1/2

gives

This system is exactly of the form used for Theorem 1, but instead

of Kd and Kp we now have K̃d and K̃p, respectively. If the latter
system is asymptotically stable, it entails that �1� is asymptotically
stable, since the two systems differ only by coordinate transfor-

mation. The global asymptotic stability of �6� therefore follows

Journal of Applied Mechanics
from Theorem 1. �
We conclude this section with a simple numerical example that

shows the applicability of the stability criterion.
Example. Consider the dynamical system

�10 0

0 11
�p̈ + �4 1

1 5
�ṗ + � 8 s

− s 9
�p = 0, �7�

where s is a free parameter. The matrices M, Kd, and the symmet-
ric part of Kp are all symmetric positive definite. Hence, when s
=0 the system is symmetric and asymptotically stable. Qualita-
tively, increasing the value of s increases the asymmetric part of
the stiffness matrix. Calculation of �, �, and � yields �= 4

5 , �

=0.328, and �=s /�110. Therefore, the stability condition of Cor-
ollary 2.1 becomes the condition �s��3.078. For comparison we
numerically calculated the eigenvalues of the 4�4 matrix A. It
turns out that for 0	s�3.920 the system �7� is asymptotically
stable �A’s eigenvalues are in the left half-plane�. We can see that
apart from being conservative, our stability condition correctly
predicts the system’s global asymptotic stability.

Application to Grasp Synthesis
In this section our objective is to determine the stability of

frictional grasps or fixtures. We consider a grasp, or fixture, ar-
rangement where a 2D object B is held by stationary 2D bodies
A1 , . . . ,Ak that represent fingertips or fixturing elements. We as-
sume frictional contacts between the stationary bodies A1 , . . . ,Ak
and B. The usual assumption made in the solid mechanics litera-
ture is that the contacting bodies are quasi-rigid, which means that
their deformations due to compliance effects are localized to the
vicinity of the contacts �9�. This assumption is always valid for all
bodies that are not made of exceptionally soft material and do not
contain slender substructures �10�. The quasi-rigidity assumption
allows us to describe the overall motion of B relative to the sta-
tionary bodies A1 , . . . ,Ak using rigid body kinematics. Since the
grasping bodies are stationary, we focus on B’s configuration
space �c-space�. The c-space of a planar object is parametrized by
q= �d ,
��R2�R, where d is B’s position and 
 is a parametri-
zation of B’s orientation.

We have derived the following linearized dynamics of a quasi-
rigid object B held in equilibrium grasp by stationary quasi-rigid
bodies A1 , . . . ,Ak �1�:

M�q0��q̈ + Kd�q0��q̇ + Kp�q0��q = 0, �8�

where q0 is the grasped object equilibrium configuration and �q is
the deviation of the actual configuration from the equilibrium.

In grasping applications M�q0� is the inertia matrix, and Kd�q0�
is the damping matrix. Both matrices are symmetric and positive
definite. The matrix Kp�q0� is the grasp stiffness matrix associated
with the mechanics of quasi-rigid frictional contacts. This matrix
is composed of the individual contact stiffness matrices, which are
asymmetric. See �1� for more details.

The asymmetry of Kp strongly depends on the direction of the
contact forces, which in some cases can be selected during grasp
synthesis. The magnitude of the matrix norm of �Kp�as increases
as the angle between the contact force and the normal at the con-
tacts increases.

For example, consider the two-finger frictional grasp shown in
Fig. 1. The example shows a grasp of a wedge-like object, which
has a head angle  and base angle 90°− as shown in the figure.
Hence, the example is actually a grasp of a family of wedge-like
objects with different head angles. In this example we assume that
the friction is sufficiently large that the fingers do not slide. Of
course, the two-finger grasp forms an equilibrium grasp. However,
the stiffness matrix Kp is asymmetric and local deformations at the
contacts can cause instability. In the example, if the contact forces
F1 and F2 are collinear with the normals at the contacts n1 and n2,

then Kp is symmetric. When the contact forces rotate away from
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the normal directions the matrix norm ��Kp�as� increases. The ro-
tation of the contact forces with respect to the normal is due to the
grasping of different objects with varying  angles. The stability
condition of Corollary 2.1 places a limit on the amount of asym-
metry allowed. Consequently, it bounds the value of the allowed
angle . Computation of the maximal  angle reveals that the
grasp is stable for �12.68°.

Conclusion
Adding an asymmetric matrix to a stable symmetric second-

order system has the potential to cause instability. In order to
avoid such instability, we establish an analytic upper bound on the
amount of asymmetry that is guaranteed to keep the asymmetric
system globally asymptotically stable. It should be emphasized
that the simple criterion presented here is sufficient for stability,
but it is not the necessary stability condition. Hence, if the crite-

Fig. 1 A two-finger grasp of a family of wedge-like objects
968 / Vol. 72, NOVEMBER 2005
rion is satisfied, it predicts the system stability, but, if it is not
satisfied, it cannot definitely predict if the system is unstable.

Recent results show that a frictional contact stiffness matrix is
asymmetric. As a result, the grasp stiffness matrix of the entire
grasp is asymmetric. We obtained a concise condition for the glo-
bal asymptotic stability of the grasp linearized dynamics and
therefore a local asymptotic stability for the nonlinear system.
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The virtual internal bond (VIB) method was developed for the
numerical simulation of fracture processes. In contrast to the tra-
ditional approach of fracture mechanics where stress analysis is
separated from a description of the actual process of material
failure, the VIB method naturally allows for crack nucleation,
branching, kinking, and arrest. The idea of the method is to use
atomic-like bond potentials in combination with the Cauchy-Born
rule for establishing continuum constitutive equations which al-
low for the material separation–strain localization. While the con-
ventional VIB formulation stimulated successful computational
studies with applications to structural and biological materials, it
suffers from the following theoretical inconsistency. When the con-
stitutive relations of the VIB model are linearized for an isotropic
homogeneous material, the Poisson ratio is found equal to 1/4 so
that there is only one independent elastic constant—Young’s
modulus. Such restriction is not suitable for many materials. In
this paper, we propose a modified VIB (MVIB) formulation, which
allows for two independent linear elastic constants. It is also ar-
gued that the discrepancy of the conventional formulation is a
result of using only two-body interaction potentials in the micro-
structural setting of the VIB method. When many-body interac-
tions in “bond bending” are accounted for, as in the MVIB ap-
proach, the resulting formulation becomes consistent with the
classical theory of isotropic linear elasticity.
�DOI: 10.1115/1.2047628�

1 Introduction
As a possible alternative to the Griffith-Orowan-Irwin approach

to fracture mechanics, multiscale material considerations may be
used to formulate continuum models allowing for material
separation–strain localization. Based on the so-called Cauchy-
Born rule, a virtual internal bond approach to modeling material
failure has been proposed by Gao and Klein �1�. This approach
differs from atomistic methods in that a phenomenological “cohe-
sive force law” is assumed to act between “material particles”
which are not necessarily atoms; it also differs from the “cohesive
surface” models in that, rather than imposing a cohesive law along
a prescribed set of discrete surfaces, a network of cohesive bonds
is statistically incorporated into a constitutive law via the Cauchy-
Born rule, i.e., by equating the strain energy density on the con-
tinuum level to the potential energy stored in the cohesive bonds
due to the imposed deformation.

Although the conventional formulation of the VIB model can
be successfully used in simulations of crack nucleation, growth,
kinking, and branching, it suffers from the following inconsis-
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tency. When the constitutive relations of the VIB model are lin-
earized for an isotropic homogeneous material, they allow for
only one independent material constant—Young’s modulus—
while the second constant—Poisson ratio—is not independent and
it is equal to 1/4. Since such restriction is not suitable for many
materials, it is desirable to modify the conventional VIB formula-
tion. This is done in the present work. The modified formulation
allows for two independent material constants in the case of the
linearized isotropic elasticity. The conventional formulation of
VIB is based on two-body interaction potentials in the microstruc-
tural setting. The modified VIB approach accounts for many-body
interactions associated with “bond bending” and the resulting for-
mulation appears to be more consistent with the classical theory of
isotropic linear elasticity.

2 Conventional VIB Formulation and its Deficiency
Consider a solid body comprising microparticles, for example,

atoms, placed at ri in the 3D space. Generally, the volumetric
density of the total potential energy of the body is a function of
the particle positions: ��r1 ,r2 , . . . ,rn�, where n is the number of
particles. More specifically, the potential energy can be written in
terms of two-particle interactions as

� =
1

2��
i,j

U�rij�, rij = �rij� = �ri − r j� , �2.1�

where � is the volume occupied by the system.
According to the Cauchy-Born rule, originally applied to the

crystal elasticity, the current rij and initial �reference� Rij =Ri
−R j relative positions of the same two particles can be related by
the deformation gradient F=Grad��X�:

rij = FRij , �2.2�

It is assumed above that particles are in the vicinity of point X at
the reference state. This point is placed at ��X� after the defor-
mation.

Substituting Eq. �2.2� in Eq. �2.1� yields

� =
1

2��
i,j

U�rij� = ��C�, C = FTF . �2.3�

Now the second Piola-Kirchhoff stress tensor and the tangent
stiffness, moduli can be derived in the usual way: SIJ=2�� /�CIJ;
KIJMN=2�SIJ /�CMN. Evidently, the microstructural approach is as
phenomenological as continuum mechanics. The phenomenology,
however, is moved to the microlevel in the former case to allow
for more flexible analysis.

Direct application of Eq. �2.3� to analysis of material behavior
seems to be difficult because of the large amount of micropar-
ticles. Gao and Klein �1� and Klein and Gao �2,3� proposed the
following averaging procedure:

� =
1

�0
�

�0
*

U�l�D�d� . �2.4�

Here �0 is the reference representative volume; U�l� is the bond
potential; l=rij =L��ICIJ�J is the current virtual bond length; �
= �Ri−R j� /L; L=Rij = �Ri−R j�; D� is the volumetric bond density
function; and �0

* is the integration volume defined by the range of
influence of U.

Considerations being limited to centrosymmetric bond density
functions, where spherical coordinates are used: �1=sin � cos �;
�2=sin � sin �; �3=cos �, it is possible to express an average as

	•
 =
1

�0
�

−�

� �
0

��
0

L*

�•�D�L,�,��L2 sin �dLd�d� , �2.5�

where L* presents the maximum distance over which particles

interact. Then the elastic moduli take the form
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KIJMN = 4��/�CIJ�CMN = 	�U��l�/l2 − U��l�/l3�L4�I�J�M�N
 .

�2.6�

The precise definition of D�L ,� ,�� is that
D�L ,� ,��L2 sin �dLd�d� presents the number of bonds in the
undeformed solid with bond length between L and L+dL and
orientation between �� ,�� and ��+d� ,�+d��.

So far, most reported analyses based on the VIB model use the
simple two-parameter phenomenological cohesive force law:
U��l�=A�l−L�exp�−B�l−L��, where A is the slope of U��l� for the
unstretched bond and 1/B is the critical stretch at which the maxi-
mum bond strength is reached.

The deficiency of the conventional formulation appears under
the assumption of homogeneity and isotropy of material, i.e.,
D�L ,� ,��=DL�L�. In this case, the linearized elastic moduli take
the form

KIJMN = 	U��L�L2
L�
−�

� �
0

�

�I�J�M�N sin �d�d�

= ���IJ�MN + �IM�JN + �IN�JM� . �2.7�

Here �=4�	L2U��L�
L /15 is the only elastic �Lame� constant.
The latter is in contradiction with the continuum mechanics result
for isotropic linear materials, which should have two independent
material constants. We can compare this tensor of elastic moduli
to the classical isotropic linear elasticity. In the latter case, the
elastic moduli tensor takes the following form,

HIJMN = 	�IJ�MN + ���IM�JN + �IN�JM� , �2.8�

where 	=2�
 / �1−2
� is the second Lame constant and 
 is the
Poisson ratio. By setting 
=1/4 we obtain 	=� and HIJMN
=KIJMN. Thus the VIB formulation allows for the linear isotropic
elasticity as a special case where the Poisson ratio equals 1 /4.
Since this restriction is not suitable for the description of many
materials, we propose a modification of the VIB method to be
fully consistent with the classical linear elasticity.

3 Modified VIB Formulation
The simple pair �two-body� potential used within the Cauchy-

Born approach is a good candidate to be responsible for the in-
consistencies of the conventional VIB model1 pointed out above.
It seems that the role of the averaging procedure is fairly subsid-
iary in the inconsistencies of the whole approach. Modification of
the cohesive law and the use of a different analytical expression
instead of the exponential law, say the Lennard-Jones potential,
will not help if the cohesive law does not change qualitatively. We
discuss one way to revise and modify the conventional VIB ap-
proach below.

From the microstructural point of view, the simple pair poten-
tial does not allow for considering simultaneous multiple �multi-
body� particle interactions.2 It may be said, instead, following
Phillips and Ortiz �4�, that the pair potential excludes “bending”
of the bonds between the particles. A way to circumvent this prob-
lem and to include bending of the bonds in analysis is to extend
Eq. �2.1� to the three-body terms, for example,

� =
1

2��
i,j

U�rij� +
1

3!��
i,j,k

V�rij,rjk,�ijk� , �3.1�

where �ijk is an angle between rk−r j and ri−r j, and V is, say, the
Stillinger-Weber �5� potential. The number of simultaneously in-
teracting particles can be further increased, of course. In the latter

1Klein and Gao �2� extended the VIB method to directionally bonded lattices such
as Si by introducing an internal degree of freedom. This approach is not applicable to
the isotropic case.

2Here we mean a simultaneous interaction of many particles, which cannot be
described by a sum of the pair potentials of every two particles involved in the

interaction as it is often done in the literature.
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case, it is not entirely clear where this process should be truncated
and what the multi-body potentials should look like. We proceed
with a different plan �see �6��, which should be preceded by the
following methodological remark.

The Cauchy-Born approach is a mixture of atomistic, or par-
ticulate, and continuum concepts. The weight of the atomistic con-
cepts in setting the approximate material model is dominant when
one plays with the number of interacting particles and the charac-
ter of their interaction. The concept of continuum deformation
appears only at the last stage of the model formulation when Eq.
�2.2� is used. Below, we propose a different strategy where the
character of continuum deformation—dilatation/distortion—is es-
sentially involved in the model formulation while the potential
energy includes only two-body interactions, in which the pair-
bonds enjoy both stretching and bending.

From the point of view of continuum mechanics, we begin with
replacing the interatomic distance rij in the total potential energy
by a more convenient quadratic measure of the interatomic dis-
tance change

� = l2 − L2 = L2�CIJ − �IJ��I�J = 2L2EIJ�I�J, �3.2�

where E= �C−1� /2 is the Green strain tensor. Let this tensor be
decomposed into spherical and deviatoric parts accordingly:

EIJ = EKK�IJ/3 + ÊIJ. �3.3�

Substituting Eq. �3.3� in Eq. �3.2� we have

� =  + �̂,  = 2L2EKK/3, �̂ = 2L2ÊIJ�I�J. �3.4�

Here  is the bond length change due to spherical dilatational

deformation and �̂ is the bond length change due to the devitoric
deformation.

Now the stored energy can be written in the following form:

U��� = U�,�̂� = A − A�1 + �B/A�exp�− �B/A − �̂2C/�2A�� .

�3.5�

The physical meaning of the introduced potential can be clarified
with the help of the “stretching” and “shearing” forces which are

derived by differentiating the potential with respect to  and �̂
accordingly:

U =
�U�,�̂�

�
= B exp�− �B/A − �̂2C/�2A�� , �3.6�

U�̂ =
�U�,�̂�

��̂
= C�1 + �B/A��̂ exp�− �B/A − �̂2C/�2A�� .

�3.7�

These forces are presented in Fig. 1. The maximum of U occurs

at =�A /B, where �̂=0. B is the slope of U at =0. The maxi-

mum of U�̂ occurs at �̂= ±�A /C, where =0. C is the slope of

U�̂ at �̂=0.
In order to examine consistency of the modified VIB formula-

tion with the linear elasticity, we compute the linearized tensor of
elastic moduli for isotropic materials. Omitting tedious intermedi-
ate transformations we get finally

KIJMN = 	L4
L�� 16
9 B − 32

45C��IJ�MN + 	L4
L�
16
15C��IM�JN + �IN�JM� ,

�3.8�
Comparing Eq. �3.8� with the elastic moduli of the classical

linear theory �Eq. �2.8�� we obtain for the Lame parameters

	 = �	L4
L� 16
9 B − 32

45C�, � = �	L4
L
16
15C . �3.9�

These two formulas present the relations between the macroscopic
Lame parameters and the microscopic parameters of the bond po-

tential.
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4 Concluding Remarks
A modified formulation of the virtual internal bond method has

been proposed in the present work. At the level of material par-
ticles or atoms, this formulation still considers two-body �pair�
bonds. However, these bonds possess both stretching and bending
stiffness. The stretching stiffness corresponds to the classical in-
teraction of two particles along the line connecting them. The
bending stiffness of the bond is a more subtle subject. It is sup-
posed to account for the simultaneous interactions between the
given two particles and other particles �multi-body interaction�
without explicitly introducing the latter ones. The modified VIB
�MVIB� formulation resolves the discrepancy between the con-
ventional VIB formulation and the classical linear elasticity be-
cause the MVIB formulation leads to two independent material
parameters. The latter is in contrast to the conventional VIB for-
mulation which leads to only one independent material parameter
when it is linearized. Thus the conventional VIB formulation is
not in peace with the well-established classical theory of isotropic
elasticity which requires two independent material parameters.

The modified VIB formulation is a marriage of the conventional
VIB formulation and the purely phenomenological approach of
Volokh �6�. While the differences between the conventional and
modified VIB formulations are clear from the present work, the

Fig. 1 “Stretching” „left… and “shearing” „
Journal of Applied Mechanics
qualitative comparison between MVIB and the phenomenological
approach is worth performing. The advantages of the MVIB
method come from its intrinsic consideration of the material mi-
crostructure. Particularly, the MVIB approach naturally allows for
considering material anisotropy and introducing the characteristic
length scale. These features make the MVIB method physically
desirable and more flexible than the phenomenological framework
of Volokh �6�. On the other hand, the MVIB formulation is more
involved computationally and this is the expected price for its
generality.
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The paper presents a numerical solution to the problem of a hot
rigid indenter sliding over a thermoelastic Winkler foundation
with a thermal contact resistance at constant speed. It is shown
analytically that no steady-state solution can exist for sufficiently
high temperature or sufficiently small normal load or speed, re-
gardless of the thermal contact resistance. However, the steady-
state solution may exist in the same situation if the thermal con-
tact resistance is considered. This means that the effect of the
large values of temperature difference and small value of force or
velocity which occur at no steady state can be lessened due to the
thermal contact resistance. When there is no steady state, the
predicted transient behavior involves regions of transient station-
ary contact interspersed with regions of separation regardless of
the thermal contact resistance. Initially, the system typically ex-
hibits a small number of relatively large contact and separation
regions, but after the initial transient, the trailing edge of the
contact area is only established and the leading edge loses con-
tact, reducing the total extent of contact considerably. As time
progresses, larger and larger numbers of small contact areas are
established, until eventually the accuracy of the algorithm is lim-
ited by the discretization used. �DOI: 10.1115/1.2042485�

1 Introduction
When two bodies slide against each other, frictional heating at

the interface causes thermoelastic deformation which modifies the
contact pressure distribution. Hills and Barber �1� gave an analyti-
cal solution for sliding Hertzian contact, using a thermoelastic
Green’s function to reduce the problem to the solution of an inte-
gral equation with a Bessel function kernel. A remarkable feature
of their results was that no steady-state solution could be found in
certain ranges of the applied load and sliding speed without vio-
lation of the unilateral contact constraints. Similar results were
demonstrated by Yevtushenko and Ukhanska �2� for a problem
with interfacial thermal contact resistance, which was not a func-
tion of pressure. Jang �3� showed that similar problems arise in the
simpler case in which the contacting bodies are replaced by elastic
foundation. He developed a numerical algorithm for the transient
problem in this case and showed that the contact area tends to
break down into a number of smaller regions as sliding
progresses. Even more surprising is the fact that this process ap-
pears to continue without limit, leading to larger and larger num-
bers of smaller contact areas. Existence theorems can be proved
for the corresponding transient problem, so we must conclude that
in these parameter ranges the system must undergo periodic or
random transient variations in contact conditions.

In this study, Jang’s analysis is extended to the sliding without
friction of a hot, rigid, perfectly conducting indenter over a linear
thermoelastic Winkler foundation with a thermal contact resis-
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tance, which is not a function of pressure. We will investigate the
effects of the thermal contact resistance on the transient ther-
moelastic contact problems.

2 Statement of the Problem
Consider the problem illustrated in Fig. 1, where an indenter at

temperature T0 is pressed into the foundation with a force F and
moves to the right at constant speed V. The mechanical behavior
of the foundation is defined by the statement that, the local contact
pressure p is proportional to the local indentation u—i.e., u�x , t�
=cp�x , t�, where c is the elastic foundation compliance. We also
assume that lateral thermal conduction in the foundation can be
neglected so that it behaves likes a set of parallel one-dimensional
rods oriented normal to the interface and each rod acts indepen-
dently of its neighbors.1

If the indenter contacts with a surface at time t= t0 with a ther-
mal resistance 1/hA where A is the contact area, the temperature
for y�0, t�t0 is given by Schneider �4� such as

T = T0�erfc� y

2���t − t0�
� − eh���t−t0�/k�y/���t−t0�+h���t−t0�/k�

� erfc� y

2���t − t0�
+

h

k
���t − t0��	 �1�

where � and k are the thermal diffusivity and the thermal conduc-
tivity, respectively. The corresponding thermal displacement on
the surface can be shown to be

��x,t� = T0�2����t − t0�
��

+
�k

h
eh2��t−t0�/k2

�erfc��h2��t − t0�
k2 � −

�k

h
	 �2�

where � is the coefficient of the thermal expansion. If contact at x
ends at t= t1, the thermal displacement will remain constant at the
value ��x , t1� for t� t1.

Using these results, the gap function can be defined as follows,

g�x,t� = g0�x,t� − d�t� − ��x,t� + u�x,t� , �3�
where

g0�x,t� = �x − Vt�2/2R �4�
is the gap between the indenter and an un-deformed foundation
and d is an unknown rigid body displacement which will gener-
ally vary with time.

The boundary condition for contact and separation regions can
be written

separation p�x,t� = 0; g�x,t� � 0;
�5�

contact p�x,t� � 0; g�x,t� = 0

and equilibrium requires that

F =

C

p�x,t�dx , �6�

where C is the contact region.

3 Dimensionless Formulation
The number of independent parameters can be reduced by uti-

lizing the self-similarity of the punch profile. There are two length
scales in the problem—the radius R and a force-related quantity
L=�3 cFR. We define the dimensionless coordinates x̂=x /L, t̂

1This is quite a good approximation for the thermal behavior of a half-space if the

Peclet number is sufficiently high.
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=Vt /L, and other dimensionless quantities through �̂=R� /L2, ĝ

=Rg /L2, d̂=Rd /L2, p̂=cRp /L2, and Ĥ=k /h�V / ��L�. Introducing
these definitions into Eqs. �2�–�4� and �6� yields

�̂�x̂, t̂� =�3��

8 �2� t̂ − t̂0�x̂�
�

− Ĥ

+ Ĥe�t̂−t̂0�x̂�/Ĥ2� erfc��t̂ − t̂0�x̂�

Ĥ
�	 ; t̂0�x̂� � t̂ � t̂1�x̂� ,

�7�

ĝ�x̂, t̂� − p̂�x̂, t̂� =
�x̂ − t̂�2

2
− d̂�t̂� − �̂�x̂, t̂� , �8�

and



Ĉ

p̂�x̂, t̂�dx̂ = 1, �9�

where ��8�2T0
2�R / �3�cFV�.

Notice that with this formulation, the dimensionless parameters
governing the evolution of the process are � which can be seen as
a ratio between thermoelastic and elastic effects and Ĥ.

The contact boundary conditions �5� show that at least one of
ĝ , p̂ must be zero for all x̂ and that the other cannot be negative.
Thus, if the right-hand side of Eq. �8� can be calculated, a positive
value will indicate a state of separation and will be equal to the
local value of ĝ, whereas a negative value will correspond to
contact and will be equal to the local value of �−p̂�.

4 Steady-State Solution
Since the contacting body moves at a constant speed, it is natu-

ral to expect the long-time behavior to become invariant in a
frame of reference moving with the body. In particular, the inden-
tation d̂ would then be independent of t̂. Denoting the value of this
constant by d0, we can then find the leading edge â�t̂� of the
contact area by enforcing ĝ=0, p̂=0 in Eq. �8�, with the result

�â − t̂�2

2
= d0, �10�

since the thermal expansion must be zero before contact starts. It
follows that â�t̂�=�2d0+ t̂ or alternatively that t̂0�x̂�= x̂−�2d0.

The expansion in the contact area can now be calculated from

Fig. 1 Geometry configuration of transient thermal contact
Eq. �7� and the contact pressure from �8�, with the result

Journal of Applied Mechanics
p̂�x̂, t̂� = −
�x̂ − t̂�2

2
+ d0 +�3��

8 �2� t̂ − x̂ + �2d0

�
− Ĥ

+ Ĥe��t̂−x̂+�2d0�/Ĥ2� erfc��t̂ − x̂ + �2d0

Ĥ
�	 . �11�

The trailing edge of the contact area b̂�x̂� is defined by the condi-
tion that the contact pressure goes to zero. One solution of the
resulting equation is clearly â�t̂� and the other is the one real root
which comes from Eq. �11� with p̂�x̂ , t̂�=0. Once â , b̂ have been
determined, the corresponding value of � can be obtained from
Eq. �9�.

For the special case where d0=0, we then have â�t̂�= t̂ from
�10� and b̂�t̂� from Eq. �11�. The corresponding pressure distribu-
tion is

p̂�x̂, t̂� = −
�x̂ − t̂�2

2
+�3��

8 �2� t̂ − x̂

�
− Ĥ

+ Ĥe�t̂−x̂�/Ĥ2
erfc��t̂ − x̂

Ĥ
�	 , �12�

and Eq. �9� then yields

1 =

b̂

â

p̂�x̂, t̂�dx̂ �13�

=
− 	

12
�2	2 + �6��3Ĥ�� − 4�	��

+
Ĥ

2
�3��

2 � 2Ĥ
��

�	 + e�	�/Ĥ2
Ĥ2

� erfc��	

Ĥ
� − Ĥ2	 , �14�

where 	= t̂− x̂.
Only positive values of d0 are admissible and it can be shown

that the integral in �9� is a monotonically increasing function of d0
in the range d0�0. Thus, there is no steady-state solution of the
assumed form if the value of the right-hand side in Eq. �14� is
greater than 1. Notice that the integral in Eq. �14� has two param-
eters, � and Ĥ, to identify the steady-state solution. Figure 2

Fig. 2 Stability diagram for � and Ĥ
shows the stability diagram in which the thermal contact resis-
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tance is included. The steady-state solutions are obtained when �
is less than 1 regardless of the value of Ĥ. However, even when �
is greater than 1 and Ĥ is above a certain value, the steady-state
solution can exist.

In general, steady solutions do not exist at sufficiently large
values of temperature difference or sufficiently small values of
force or velocity. But the effect of the large values of temperature
difference and small value of force or velocity which occur at no
steady state can be lessened due to the thermal contact resistance.

To determine how the system behaves at large values of time
for ��1 and Ĥ�0, a numerical solution of the problem has been
developed, which is described in the next section.

5 Numerical Implementation
The contact problem can be discretized in space and time by

dividing the elastic foundation into discrete strips of width 
x̂ and
proceeding in increments of time 
t̂. The numerical algorithm
explained below was developed by Jang �3�.

It is convenient to take the vertical rigid body displacement
d̂�t̂ j� as a fundamental variable defining the evolution of the pro-
cess, where t̂ j is the time after the jth time increment. If d̂�t̂ j� were
known for all j, the trajectory of all points on the moving body
would also be known and hence we would be able to determine
the time t̂0�x̂i� at which any given element at x̂i comes into con-
tact. The subsequent thermal expansion could then be determined
for each x̂i from Eq. �7� and the contact pressure p̂�x̂i , t̂ j� from Eq.
�8�. A negative value of p̂�x̂i , t̂ j� at any contacting element indi-
cates loss of contact and could be used to set the value for t̂1�x̂i�.

Of course, d̂�t̂ j� is not known a priori. Instead, it must take
whatever value is required to satisfy the equilibrium condition �9�,
which in discretized form can be written

S � �
i�Ĉ

p̂�x̂i, t̂ j�
x̂ = 1, �15�

where Ĉ is the set of nodes in contact. The relation between S and
d̂ is nonlinear because the contact area Ĉ varies with d̂. In the
numerical solution, we must therefore determine d̂ at each time
step by iteration. We take the value of d̂ at the previous time step
as an initial guess for this process. The right-hand side of �8� can
then be calculated for all nodes and those in which negative val-
ues are obtained correspond to contact nodes, which make a con-
tribution to the sum in Eq. �15�. The value of S so calculated will
generally differ from unity and we therefore make a correction to

d̂ using the algorithm

d̂new = d̂old +
1 − S

NC
x̂
, �16�

where NC is the number of elements in Ĉ at the previous iteration.

Equation �15� shows that this would yield the correct value of d̂

in one iteration if the elements of Ĉ were unchanged after the
iteration. Of course, this is not generally the case, but convergence
is found to be very rapid and terminates completely once the
increment in d̂ is small enough to have no further effect on the set
of contact nodes.

When the value of d̂�t̂ j� has been established, the elements are
scanned to determine which, if any, change state from separation
to contact or vice versa during the jth time step, in order to set the
corresponding values of t̂0 , t̂1 in Eq. �7�. The time can now be
updated through

t̂ j+1 = t̂ j + 
t̂ �17�
and the process repeats indefinitely.

Note that in the numerical simulation, the discrete strips of
ˆ ˆ
width 
x=0.001 and the increments of time 
t=0.001.
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6 Results

6.1 Contact Area and Rigid Body Penetration. The results
confirm that for ��1, the system always settles into a steady state
from the initial period even if Ĥ is any value. This demonstrates
that the steady-state solution is stable under transient perturba-
tions. Figure 3 shows the extent of the contact area and the rigid
body penetration. The indenter is assumed to be pressed against
the foundation at t̂=0 and to start moving immediately at speed V.
In the initial transient, the leading edge moves parabolically with
time while the trailing edge of the contact area moves linearly
with time, but the total extent of contact changes a little. During

this period, thermal expansion forces the bodies apart, causing d̂
to decrease. Eventually the expansion levels off and the additional
elastic displacement associated with the reduction in contact area

�and consequent increase in contact pressure� allows d̂ to increase
again, until a steady contact area is established. A steady state,
with a single contact area, both boundaries of which move at
speed V, is established after t̂=3.

When ��1, the transient behavior of the system depends upon
the values of Ĥ. Figure 4 shows the extent of the contact area and
the rigid body penetration d̂ as functions of time t̂ for �=6.0 and

Fig. 3 Extent of contact area and rigid body penetration d̂ as a
function of time t̂ for �=0.9 and Ĥ=0.5

Fig. 4 Extent of contact area and rigid body penetration d̂ as a
ˆ ˆ
function of time t for �=6.0 and H=2.0
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Ĥ=2.0. In the initial transient, the leading edge of the contact area
remains unchanged, while the trailing edge moves, reducing the
total extent of contact. During this period, a similar transient con-
tact behavior like the case of Fig. 3 is shown, until a new sepa-
rated contact area is established. A steady state, with a single
contact area, both boundaries of which move at speed V, is estab-
lished after about t̂=3.

As Ĥ decreases, the duration of the initial transient increases
and involves a succession of separated contact areas and oscilla-
tions in the value of d̂. However, the transient contact behavior is
still affected by Ĥ. Figure 5 shows the extent of the contact area
and the rigid body penetration d̂ as functions of time t̂ for �

=6.0 and Ĥ=1.5. It shows that a steady state with a single contact
area is established after about t̂=12, confirming that the system
settles into a steady state as already expected in the map of steady
state shown in Fig. 2.

When Ĥ decreases more and the system settles into no steady
state, the duration of the initial transient increases and involves a
succession of separated contact areas and oscillations in the value
of d̂ incessantly. In addition, regions of alternating contact and
separation occur for all time and the size of the typical contact
area appears to decrease continually as the state evolves. After the
initial transient, only the trailing edge of the contact area at the
initial transient is established and the leading edge loses contact,
reducing the total extent of contact considerably. Figures 6 and 7
show the results for �=6.0 and Ĥ=1.0, and �=6.0 and Ĥ=0.5,
respectively. For Fig. 6, it shows that the system has no steady
state and its state is characterized as contact with numerous small
intervening regions of separation after about t̂=4. A corresponding
small oscillation occurs in the rigid body penetration d̂. For Fig. 7,
in the early stage, the same explanation given for Fig. 6 can be
used and then the larger total extent of contact is established and

varies. The penetration d̂ increases more for a new contact area to
form, compared with the case of Fig. 6.

For �=6.0 and Ĥ=0.1, larger separation zones alternate with
relatively small zones of contact �Fig. 8�. Periodically the penetra-

tion d̂ increases sufficiently for a new contact area to form �and
hence expand� or lateral motion permits the trailing contact zone
to be lost.

This transient state does not tend to appear to a steady periodic
state �e.g., one with equal-spaced contact areas�. Also, the typical
contact area size decreases as time progresses, ultimately ap-
proaching the level of discretization of the algorithm.

Fig. 5 Extent of contact area and rigid body penetration d̂ as a
function of time t̂ for �=6.0 and Ĥ=1.5
6.2 Dynamic Behavior of Rigid Body Penetration. This in-

Journal of Applied Mechanics
vestigation presents that the rigid body penetration d̂ oscillates
continuously after the initial transient, being small or large ac-
cording to � and Ĥ in the no-steady-state domain. We can pre-

Fig. 6 Extent of contact area and rigid body penetration d̂ as a
function of time t̂ for �=6.0 and Ĥ=1.0

Fig. 7 Extent of contact area and rigid body penetration d̂ as a
ˆ ˆ
function of time t for �=6.0 and H=0.5
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cisely identify the state of the system, steady or no steady state, by
considering the long-term dynamic behavior of the rigid body
penetration. A phase diagram, representing the two dimensional

relationship between d̂ and d̂
˙
, is used to investigate the stability of

the system.
When the system has a steady state solution, the motion of the

rigid body penetration is stable, while the system has a chaotic
solution when there is no steady state solution. Figures 9 and 10
show the phase diagram for �=6.0 and Ĥ=2.0, and �=6.0 and
Ĥ=1.5, respectively. It shows that the state trajectories converge
to a point, meaning that the systems are stable. Thus we can
confirm that the system is stable since the systems settle into a
steady state as explained in the above results.

When the system undergoes no steady state, the state trajecto-
ries have a large locus at the initial transient and then converge to
a certain amount of locus, finally deviating from the locus. As
time progresses, the locus of the trajectory grows and the motion
after the initial transient is repeated. Even though the locis of
trajectories are small, however, we can confirm that the system is
unstable since the locus of the state trajectory after the initial
transient increases further. Figures 11–13 show the phase diagram
for �=6.0 and Ĥ=1.0, �=6.0 and Ĥ=0.5, and �=6.0 and Ĥ
=0.1, respectively. The locus of the state trajectories after the
initial transient grows larger as Ĥ decreases, implying that the
oscillation of the rigid body penetration d̂ increases.

Fig. 8 Extent of contact area and rigid body penetration d̂ as a
function of time t̂ for �=6.0 and Ĥ=0.1

ˆ
Fig. 9 Phase diagram for �=6.0 and H=2.0
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7 Discussion and Conclusions
The investigation presents a numerical solution to the problem

of a hot rigid indenter sliding over a thermoelastic Winkler foun-
dation with a thermal resistance at a constant speed. The numeri-

Fig. 10 Phase diagram for �=6.0 and Ĥ=1.5

Fig. 11 Phase diagram for �=6.0 and Ĥ=1.0

ˆ
Fig. 12 Phase diagram for �=6.0 and H=0.5
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cal solution shows that the steady-state solution, when it exists, is
the final condition regardless of the initial conditions imposed.
This suggests that the steady state is also stable. When there is no
steady state the predicted transient behavior involves regions of
transient stationary contact interspersed with regions of separa-
tion. Initially, the system typically exhibits a small number of
relatively large contact and separation regions, but as time
progresses, larger and larger numbers of small contact areas are
established, until eventually the accuracy of the algorithm is lim-
ited by the discretization used.

The results also show that the thermal contact resistance affects

Fig. 13 Phase diagram for �=6.0 and Ĥ=0.1
Journal of Applied Mechanics
the long-term behavior of the system along with the parameter �,
a ratio between thermoelastic and elastic effects. Regardless of the
thermal contact resistance, the steady-state solutions are obtained
when � is less than 1. However, when � is greater than 1, the
steady-state solution can exist according to the thermal contact
resistance. This means that the effect of the large values of tem-
perature difference and the small value of force or velocity which
occur at no steady state can be lessened due to the thermal contact
resistance. Furthermore, after the initial transient, the trailing edge
of the contact area is only established and the leading edge loses
contact, reducing the total extent of contact considerably. This
contact behavior was not seen in the system without the thermal
contact resistance.

A question still exists as to how much the Winkler foundation
assumption, which states that the local contact pressure is propor-
tional to the local indentation, may affect the predicted contact
behavior. One of the limitations of the Winkler foundation as-
sumption is that it does not consider the shear effect. Our calcu-
lations may not predict the exact transient behavior of real ther-
moelastic surfaces, but the calculations provide an indication that
the periodic or random contact will occur under a certain range of
applied load, sliding speed, temperature, and particularly thermal
contact resistance.
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Fleck and Deshpande �FD� proposed an analytical model to
encapsulate the response of clamped sandwich beams to blast
loadings in air and under water. Four pertinent issues, viz., �1�
application of Taylor’s model �1� to air blast loadings, �2� the
limiting impulse transferable to a stationary rigid face in an air
blast, �3� inconsistencies in the proposed shock model, and �4�
application of the shock theory to certain micro-architectured core
materials, require clarification. Detailed comments are as follows:

�1� The net pressure acting on the front face of the sandwich
beam �Eq. �15� of FD� was proposed to be the superposi-
tion of the incoming and reflected blast wave pulses. This is
acceptable for the typically weak shock �or sound� waves
generated in underwater explosions because water is nearly
incompressible. However, by using the results of the weak
shock analysis to estimate typical impulses delivered to the
front face of the sandwich beam by strong shock waves in
air blasts �pages 389 and 397 of FD�, FD imply that their
modified Taylor’s model �1� is also applicable to non-
linear, finite amplitude disturbances propagating in a com-
pressible medium. This needs to be justified or qualified.

�2� For air blast loadings, FD rightly propose that full transmis-
sion of the blast impulse to the sandwich beam, assuming a
stationary rigid front face, be considered for safe design.
However, the limiting impulse transmitted is based on a
weak shock in water, where the reflected overpressure
�peak pressure� is twice the incident overpressure, given by
FD to be

1
To whom correspondence should be addressed.
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I =�
0

�

2poe−t/�dt = 2po� , �1�

where po is the overpressure and � the decay constant. By
contrast, the Rankine-Hugoniot relations predict a reflected
overpressure of eight times the incident overpressure for a
strong shock propagating in an ideal gas, giving a limiting
impulse of 8po� from momentum considerations, a classi-
cal result well known to fluid mechanicists �2–4�. The ac-
tual reflected overpressure could reach a factor of 20, or
even higher, if real gas effects, such as dissociation and
ionization of the air molecules, are taken into consideration
�4�. Therefore, it is questionable whether the performance
charts constructed based on Eq. �1� provide a safe guide for
the design of air-blast resistant sandwich beams.

�3� Instead of establishing a local balance of energy across the
shock wave2 front, FD presents a global energy balance of
the sandwich beam where the following two inconsisten-
cies arise from the use of the term �nY�DX �Eq. �28� in FD�:

�i� That the energy absorbed per unit volume of core material
��nY�D� is independent of the initial front face velocity vo.
For an aluminium alloy foam core, this is not consistent
with FD’s own recent studies reported in �5�, nor with the
authors’ experimental data �6�.

�ii� That the change in the internal energy3 density of the core
material ��cU� �=�nY�D by FD� is independent of the par-
ticle velocity jump �v� across the shock front, where ��
���d− ��u, U is the internal energy per unit mass, �c is the
core density and the symbols used by FD also apply here.
By contrast, the basic jump conditions predict that �7�

��cU� = �u��� + �c�v�2/2. �2�

This can also be confirmed with an idealized example us-
ing ABAQUS explicit. Figure 1 shows a two-dimensional
honeycomb �comprised of 21�74 regular cells of 4 mm
edge length and 0.34 mm wall thickness� with a relative
density of 0.1, which is fixed at the right end and com-
pressed at a constant velocity from the left. The aluminium
alloy cell walls have rate-independent, elastic, perfectly
plastic properties identical to those used by Chen et al. �8�.
Each cell wall is modeled using four general-purpose shell
elements �S4R of ABAQUS� and self-contact simulations
have been incorporated. Figure 2 shows the internal en-
ergy density �using “ALLIE” in ABAQUS� of the honey-

2Note that the term “shock wave” is used to describe a progressive cell-crushing
phenomenon �see Fig. 1�. This is an inertial phenomenon often associated with the
high velocity compression of cellular materials and structures �9,10�. In a sense, it is
not the classical shock wave described by fluid mechanicists and shock physicists.
Rather, the deformation response exhibits “shock-type” characteristics and the field
variables appear to obey the basic jump conditions �6,7�. Terms such as compaction
or consolidation waves could equally be used.

3Since all forms of non-mechanical energies and the energy dissipated by viscous
effects and by time-dependent deformation are neglected, the contributions to the
internal energy of a fixed body of material are the recoverable elastic strain energy

and the energy dissipated by plasticity �11�.
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comb at three velocity levels. The upturn at the end of
each curve shows an increased absorption of energy by the
honeycomb at full locking with impact velocity. In all
cases, the energy dissipated by rate-independent plastic
deformation occurs mostly within the compression zone
highlighted in Fig. 1, and accounts for more than 95% of
the internal energy density plotted. Since �v��vo, Fig. 2
shows that ��cU� is dependent upon �v� at every stage of
the compression process. Therefore, it is questionable
whether energy conservation has been achieved by Eq.
�28� of FD.

�4� Two of the core topologies depicted in Figs. 2�d� and 2�e�
of FD are likely to exhibit strong “Type-II” inertial effect
where the shock analysis is known to be unsatisfactory
�9,10�. Previous studies of the dynamic compression of
wood along the grain and of the out-of-plane compression
of honeycombs have shown that a shock model based upon
their respective quasi-static stress-strain curve consistently
under-predicts their dynamic strength, and this is particu-
larly evident at the higher impact velocities where a shock
is expected to form. The reasons for this have been identi-
fied and explained by Reid et al. �9,10�.

An important conclusion of FD’s analysis is the apparent
advantage of sandwich construction over solid plates of the
same mass per unit area to blast loadings. However, despite
the good agreement between the predictions of the model
and the results of FE simulations by Xue and Hutchinson
�12�, which also assumes that the limiting reflected over-
pressure is twice the incident overpressure for air blast
loadings, the efficacy of FD’s model should be treated with
caution for the above reasons and requires further
validation.

Fig. 1 In-plane compression of a honeycomb at up to � /L
É50%, where � is the displacement of the left end measured
from its initial configuration and L is the initial length of the
structure
Journal of Applied Mechanics
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The authors, Fleck and Deshpande �FD�, are grateful for the
interest shown in their work �1� by Tan et al. �2�.

The aim of the FD study �1� was to present a simple analytical
framework in order to understand the sequence of deformation
events in shock-loaded sandwich beams. The analytical frame-
work, although limited in accuracy, provides physical insight and
allows for the interpretation of full numerical simulations and ex-
periments. We reply to the comments of Tan et al. �2� point by
point.

Points 1 and 2: We agree with Tan et al. �2� that the Taylor �3�
analysis is of limited accuracy for strong air shocks. However, the
FD analysis can handle strong air shocks provided one takes the
transmitted impulse as an input to the model. This was done in the
paper.

Point 3: �i� A global energy balance is a possible assumption
for the core compression phase, leading to an internally self-
consistent theory. FD used it in order to obtain simple analytical
expressions for the degree of core compression. Recently, the ac-
curacy of this assumption in predicting the sandwich panel shock
response has been assessed by Deshpande and Fleck �4� for the
case of a foam core. For such a core, shock wave effects and rate
effects are important. The simple energy balance then over-
predicts the degree of core compression as it neglects additional
mechanisms of dissipation �largely viscous we believe�.

Recall that the FD model was developed for lattice cores such

as the corrugated core. The application of shock theory to those
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cores remains in open topic and hence FD used a simple energy
balance argument to develop an initial understanding of the sand-
wich beam response.

Point 3: �ii� Tan et al. �2� argue that large internal energy can
accrue in a metallic foam made from a rate independent plastic
solid material by a switch in the deformation mode from bending
to stretching of the cell walls. It is difficult to see how this mecha-
nism switch can explain increases in plastic work by an order of
magnitude or more at high velocities. This can argued as follows.
An ideal work calculation can be performed by equating the
change in internal energy shown in the FE calculations of Tan et
al. �2� to the degree of axial stretch of the cell walls of the foam in
the extreme case of all the cell walls equally sharing this energy
change. In the case of an impact velocity vo=200 ms−1, each cell
wall would need to undergo a nominal compressive strain of 0.991

or equivalently the cell walls thickening by more than a factor of
100. This is physically unrealistic and not borne out by experi-
ment �5�. It is the opinion of FD that a major component to the
internal work in the simulations of Tan et al. �2� �Figs. 1 and 2� is
from the artificial viscosity inherent in the explicit FE simulations
using ABAQUS.

Point 4: We agree that the dynamic strength of lattice cores can
exceed the static strength. This can be due to rate sensitivity
and/or inertial effects. The FD analysis neglects both effects. De-
spite these simplifications �not inconsistencies� the model is re-
markably robust.

Comparison of the FD analysis with more sophisticated calcu-
lations and experiments remains an active research topic, and FD
welcome such activity.
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I wish to point out that there are equations for the vibration ��1�,
pp. 259–261� and buckling �2� of elastically isotropic circular cy-
lindrical shells that are as accurate as, but much simpler than, the
so-called Exact Flügge Equations �Model III� that the authors use
as their standard of comparison for the two sets of approximate
equations they analyze, namely, the �simplified� Donnell Equa-
tions �Model I� and the Simplified Flügge Equations �Model II�. �I
use the adjective “so-called” because there is no set of two-
dimensional shell equations that is “exact.”� On pp. 225–230 of
�1� Niordson presents one possible derivation of the Morley-
Koiter equations in terms of midsurface displacements in which
the two equations of tangential equilibrium �or motion� are iden-
tical to the simplified Donnell equations—that is, the first two of
the authors’ Flügge equations �3� with the coefficients of the small

2 2
parameter �1−� ��D /EhR � set to zero—whereas the equation of

Journal of Applied Mechanics Copyright © 20
normal equilibrium �or motion� may be obtained from the third
Flügge equation by replacing the coefficient of �1−�2��D /EhR2�
in brackets by 2R2�2w+w, where �2=�2 /�x2+R−2�2 /��2.

A simplified set of buckling equations for an elastically isotro-
pic circular cylindrical shell under uniform axial, torsional, and
internal pressure loads may be found in �2� where, as may be seen
there from Eqs. �3.25�–�3.29�, the equations for buckling of a
simply supported cylinder under a uniform axial load or a uniform
internal pressure are considerably simpler than the analogous
Flügge equations yet free of the defects of the simplified Donnell
equations. �A notable feature of these equations is that Poisson’s
ratio � appears only in the combined parameter D /EhR2.�

It is also important to point out that these simple, accurate
equations have been shown rigorously �3,4� to be as accurate as
the Flügge equations for any problem that can be formulated as a
variational principle using the Rayleigh quotient. The key is the
demonstration that the modified strain-energy density that leads to
the Morley-Koiter equations �and their analog for buckling� dif-
fers from the strain-energy density of the Flügge equations by
terms of relative order h /R—terms that are of the same order as
the intrinsic errors in the Flügge equations.
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This discussion intends to make comments on the recent article
of Sato et al. �1� regarding their descriptions of self-consistency
conditions for the effective medium in the multiple scattering
theory. Equations �13� and �14� in Ref. �1� were obtained origi-
nally by Yang and Mal �2� by extending the static generalized
self-consistent method �GSCM� with recourse to Waterman and
Truell’s theory �3�. Recently, the dynamic GSCM was recast �4�
based on a simple consideration of wave energy in the model
applying the energy theorem for the scattering in absorbing media
�5�, and also the equivalence between Eqs. �13� and �14� and

A1
*�Kp,e1� = B1

*�Ksv,e1� = 0

was shown. In the dynamic GSCM, the self-consistency condition
of the effective medium �or the dispersion relation� reduces to
vanishing of the wave energy extinction in the model. It should be
noted that this can be further generalized to different self-
consistent-type formulations of the multiple scattering problem. A
simple but fairly general way to show this might be to express the
Ewald formula �3� in the self-consistent form
982 / Vol. 72, NOVEMBER 2005 Copyright ©
K = K + �2�no

K
�F�e1�

or therefore

F�e1� = 0

where no is the scatter number density and F�e1� denotes the for-
ward scattering amplitude defined in the effective medium with
consideration of multiple scattering effect. Note that subscript de-
noting the wave mode is suppressed for brevity.

In the article by Sato et al. �1�, several logical and conceptual
problems are found �Eqs. �16�–�19��. For example, it is obvious
that Eq. �16� is just a sufficient condition to Eqs. �13� and �14�,
thus the equivalence cannot be so asserted. So it is again with Eq.
�19� to Eqs. �17� and �18�. Moreover, Eq. �19�

A�
*�Kp, x̂� = B�

*�Ksv, x̂� = 0 for ∀ x̂ � ± e1

can be brought up more reasonably from the known physical fact,
“the absence of coherence in non-propagation directions,” than
from Eqs. �17� and �18� which appear to be rather trivial when
reminding that the Waterman and Truell formula is meaningful
only in the propagation direction. All this awkwardness seems to
arise because the dynamic GSCM was formulated in the frame-
work of the Waterman and Truell theory, which is not necessary at
all. Even though the paper �4� provides a theoretically simple
proof for a physically conceivable fact, the result takes away all
those problems in the above caused in the constraint of Waterman
and Truell formalism.
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